Advanced Search+
LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
Citation: LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15

Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

Funds: supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)
More Information
  • Received Date: February 12, 2015
  • Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200oC in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940oC using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage.
  • 1 Liu X, Lian Y Y, Chen L, et al. 2014, J. Nucl. Mater.,455: 382 2 Visca E, Cacciotti E, Komarov A, et al. 2011, Fusion Eng. Des., 86: 1591 3 Litunovsky N, Alekseenko E, Makhankov A, et al.2011, Fusion Eng. Des., 86: 1749 4 Li Q, Qin S G, Wang W J, et al. 2013, Fusion Eng.Des., 88: 1808 5 Li J G, Luo G N, Ding R, et al. 2014, Phys. Scr., T159:014001 6 Liu X, Zhang F, Tao S Y, et al. 2007, J. Nucl. Mater.,363-365: 1299 7 Zhou Z J, Guo S Q, Song S X, et al. 2011, Fusion Eng.Des., 86: 1625 8 Lian Y Y, Liu X, Xu Z Y, et al. 2013, Fusion Eng.Des., 88: 1694 9 Xu Y, Xie C Y, Qin S G, et al. 2014, Phys. Scr., T159:014008 10 Chen L, Lian Y Y, Liu X. 2014, Plasma Sci. Technol.,16: 278 11 Sun C X, Wang S M, Guo W H, et al. 2014, J. Mater.Sci. Technol., 30: 1230 12 Li J, Yang J F, Chen J L. 2011, J. Nucl. Mater., 418:110 13 Wang Q, Yang F Z, Zhu H L, et al. 2015, Chin. J.Nonferrous Met., 2: 360 (in Chinese) 14 Makhankov A, Mazul I, Safronov V, et al. 1998, Development and Optimisation of Tungsten Armour Ge- ometry for ITER Divertor. Proceedings of the 20th Symposium on Fusion Technology (SOFT), Marseill 15 Merola M, Vieider G, Bet M, et al. 2001, Fusion Eng.Des., 56-57: 173 16 Rigal E, Bucci P, Marois G Le. 2000, Fusion Eng. Des.,49-50: 317 17 You J H, Brendel A, Nawka S, et al. 2013, J. Nucl.Mater., 438: 1 18 Zhou Z J, Song S X, Du J, et al. 2007, J. Nucl. Mater.,363-365: 1309 19 ITER-EDA Final Design Report. 1998, Materials Assessment Report 20 Rodig M, Duwe R, Ibbott C, et al. 1998, Fusion Eng.Des., 39-40: 551 21 Wirtz M, Linke J, Pintsuk G, et al. 2013, J. Nucl.Mater., 438: S833 22 Duwe R, Kuhnlein W, Munstermann H. 1994, The New Electron Beam Facility for Materials Testing in Hot Cells-Design and Preliminary Experience. Proceedings of the 18th Symposium on Fusion Technology (SOFT), Karlsruhe, Germany 23 Roedig M, Kuehnlein W, Linke J, et al. 2002, Fusion Eng. Des., 60: 135

Catalog

    Article views (699) PDF downloads (1154) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return