Advanced Search+
GU Jianwei (顾建伟), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), YAN Ping (严萍), SHAO Tao (邵涛). Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap[J]. Plasma Science and Technology, 2016, 18(3): 230-235. DOI: 10.1088/1009-0630/18/3/03
Citation: GU Jianwei (顾建伟), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), YAN Ping (严萍), SHAO Tao (邵涛). Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap[J]. Plasma Science and Technology, 2016, 18(3): 230-235. DOI: 10.1088/1009-0630/18/3/03

Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap

Funds: supported by National Natural Science Foundation of China (Nos. 51222701, 51477164) and the National Basic Research Program of China (No. 2014CB239505-3)
More Information
  • Received Date: September 06, 2015
  • Large-scale non-thermal plasmas generated by nanosecond-pulse discharges have been used in various applications, including surface treatment, biomedical treatment, flow con?trol etc. In this paper, atmospheric-pressure diffuse discharge was produced by a homemade nanosecond-pulse generator with a full width at half maximum of 100 ns and a rise time of 70 ns. In order to increase the discharge area, multi-needle electrodes with a 3×3 array were designed. The electrical characteristics of the diffuse discharge array and optical images were investigated by the voltage-current waveforms and discharge images. The experimental results showed that the intensity of diffuse discharges in the center was significantly weaker than those at the margins, resulting in an inhomogeneous spatial uniformity in the diffuse discharge array. Simulation of the electric field showed that the inhomogeneous spatial uniformity was caused by the non-uniform distribution of the electric field in the diffuse discharge array. Moreover, the spatial uniformity of the diffuse discharge array could be improved by increasing the length of the needle in the centre of the array. Finally, the experimental results confirmed the simulation results, and the spatial uniformity of the nanosecond-pulse diffuse discharge array was signi?cantly improved.
  • 1 Zhang C, Shao T, Yan P. 2014, Chin. Sci. Bull., 59: 1919(in Chinese) 2 Lu X. 2011, Scientia Sinica Physica, Mechanica & Astronomica, 41: 801 3 Ma H, Zhang C, Shao T, et al. 2013, Diffuse discharges of multi-needle-plane gaps sustained by repetitive nanosecond pulses at atmospheric pressure. IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Shenzhen 4 Shao T, Zhang C, Niu Z, et al. 2011, Appl. Phys. Lett.,98: 021503 5 Jin Y, Ren C, Yang L, et al. 2013, Plasma Sci. Technol.,15: 1203 6 Ren C, Wang D, Wang Y. 2008, Plasma Sci. Technol.,10: 556 7 Lv X, Ren C, Ma T, et al. 2012, Plasma Sci. Technol.,14: 799 8 Rep’ev A G, Repin P B, Danchenko E G. 2008, Tech.Phys., 53: 858 9 Tarasenko V F. 2006, Appl. Phys. Lett., 88: 081501 10 Zhang C, Shao T, Ma H, et al. 2013, IEEE Trans. Dielectr. Electr. Insul., 20: 1304 11 Noggle R C, Krider E P, Wayland J R. 1968, J. Appl.Phys., 39: 4746 12 Pai D Z, Lacoste D A, Laux C O. 2010, J. Appl. Phys.,107: 093303 13 Tholin F, Rusterholtz D L, Lacoste D A, et al. 2011,IEEE Trans. Plasma Sci., 39: 2254 14 Pai D Z, Stancu G D, Lacoste D A, et al. 2009, Plasma Sources Sci. Technol., 18: 045030 15 Baksht E H, Burachenko A G, Kostyrya I D, et al. 2009,J. Phys. D: Appl. Phys., 42: 185201 16 Baksht E K, Burachenko A G, Tarasenko V F. 2009,Quantum Electronics, 39: 1107 17 Tarasenko V F, Baksht E K, Burachenko A G, et al.2010, Tech. Phys., 55: 210 18 Tarasenko V F, Baksht E K, Lomaev M I, et al. 2013,Tech. Phys., 58: 1115 19 Chollet A, Jeanney P, Pasquiers S, et al. 2014, IEEE Trans. Plasma Sci., 42: 2344 20 Luo H, Ran J, Wang X. 2014, IEEE Trans. Plasma Sci.,42: 2842 21 Li L, Liu Y L, Teng Y, et al. 2014, Phys. Plasmas, 21:073506 22 Li L, Liu L, Liu Y L, et al. 2014, J. Appl. Phys., 115:023301 23 Teng Y, Li L, Liu Y L, et al. 2014, Phys. Plasmas, 21:103510 24 Packan D. 2003, Repetitive nanosecond glow discharge in atmospheric pressure air [Ph.D]. Stanford University, America 25 Liu Z, Wang W, Yang D, et al. 2014, Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 121: 698 26 Liu Z, Wang W, Yang D, et al. 2013, J. Appl. Phys.,113: 233305 27 Zhang S, Wang W, Jiang P, et al. 2013, J. Appl. Phys.,114: 163301 28 Shao T, Zhang C, Zhou Y, et al. 2014, IEEE Trans.Plasma Sci., 42: 2408 29 Shao T, Yan P, Long K, et al. 2008, IEEE Trans. Plasma Sci., 36: 1358 30 Shao T, Tarasenko V F, Zhang C, et al. 2013, J. Appl.Phys., 113: 093301 31 Shao T, Zhang C, Jiang H, et al. 2011, IEEE Trans.Plasma Sci., 39: 1881 32 Zhang C, Shao T, Niu Z, et al. 2011, IEEE Trans.Plasma Sci., 39: 2070 33 Zhang C, Shao T, Zhou Z, et al. 2014, IEEE Trans.Plasma Sci., 42: 2378 34 Shao T, Sun G, Yan P, et al. 2006, J. Phys. D: Appl.Phys., 39: 2192

Catalog

    Article views (357) PDF downloads (806) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return