Advanced Search+
ZHAO Xiaoling (赵小令), JIAO Juntao (焦俊韬), LI Bing (李冰), XIAO Dengming (肖登明). The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6 [J]. Plasma Science and Technology, 2016, 18(3): 292-298. DOI: 10.1088/1009-0630/18/3/13
Citation: ZHAO Xiaoling (赵小令), JIAO Juntao (焦俊韬), LI Bing (李冰), XIAO Dengming (肖登明). The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6 [J]. Plasma Science and Technology, 2016, 18(3): 292-298. DOI: 10.1088/1009-0630/18/3/13

The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6

  • The density distributions related to gas electronegativity for c-C4F8 gas, including negative ion, electron number and electron energy densities in the discharge process, are derived theoretically in both plane-to-plane and point-to-plane electrode geometries. These calculations have been performed through the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment and a fluid model in the condition of both uniform and non-uniform electric fields. The electronegativity coefficients a = n−/ne of c-C4F8 and SF6 are compared to further describe the electron affinity of c-C4F8. The result shows that c-C4F8 represents an obvious electron-attachment performance in the discharge process. However, c-C4F8 still has much weaker gas electronegativity than SF6, whose electronegativity coe?cient is lower than that of SF6 by at least three orders of magnitude.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return