Advanced Search+
ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10
Citation: ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10

Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

Funds: supported by National Natural Science Foundation of China (Nos. 20507004, 21577023)
More Information
  • Received Date: August 30, 2015
  • For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF4, SF6 and SF5CF3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF6, air and water vapor, respectively. 0.4 kPa CF4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF5CF3 was much more effective than that of SF6 and CF4 and moreover, 1.3 kPa SF5CF3, discharged with 30 kPa O2, Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases.
  • 1 IPCC. 2001, Climate Change 2001: Synthesis Report.Cambridge University Press, Cambridge 2 Sturges W T, Wallington T J, Hurley M D, et al. 2000,Science, 289: 611 3 Nielsen O J, Nicolaisen F M, Bacher C, et al. 2002,Atmospheric Environment, 36: 1237 4 Worton D R, Sturges W T, et al. 2007, Environ. Sci.Technol., 41: 2184 5 Aslam M, Khalil K, Rasmussen R A, et al. 2003, Environ. Sci. Technol., 37: 4358 6 Ravishankara R A, Solomon S, Turnipseed A A, et al.1993, Science, 259: 194 7 Zhang J L, Zhang R X, Fang H J, et al. 2005, China Environmental Science, 25: 10 (in Chinese) 8 Huang L, Zhu L, Pan X, et al. 2005, Atmospheric Environment, 39: 1641 9 Huang L, Dong W B, Zhang R X, et al. 2007, Chemosphere, 66: 833 10 Shen Y, Huang L, Zhang R X, et al. 2007, Environmental Chemistry, 26: 275 (in Chinese) 11 Song X X, Liu X G, Zhang R X, et al. 2009, Journal of Hazardous Materials, 168: 493 12 Shen Y, Ye Z L, Chen Q, et al. 2009, Research of Environmental Sciences, 22: 531 13 Liu X G, Zhang J H, Zhang R X, et al. 2013, Journal of Chemical Technology & Biotechnology, 89: 436 14 Nozaki T, Yu M, Unno Y, et al. 2001, Journal of Physics D: Applied Physics, 34: 3383 15 Kogelschatz U. 2003, Plasma Chemistry & Plasma Processing, 23: 1 16 Chang M B, Lee H M. 2004, Catalysis Today, 89: 109 17 Hou J, Liu X N, Hou H Q. 1999, Shanghai Environmental Science, 18: 151 (in Chinese) 18 Shih M, Lee W J, Chen C Y. 2003, Industrial & Engineering Chemistry Research, 42: 2906 19 Zhao G B, Garikipati S J. 2005, Chemical Engineering Science, 60: 1927 20 Sung Y M, Sakoda T. 2005, Surface & Coatings Technology, 197: 148 21 Pepi F, Ricci A, Stefano M D, et al. 2003, Chemical Physics Letters, 381: 168 22 Lee H M, Chang M B, Wu K Y. 2004, Journal of the Air & Waste Management Association, 54: 960 23 Van Brunt R J, Herron J T. 1990, IEEE Transactions on Electrical Insulation, 25: 75 24 Pradayol C, Casanovas A M, Aventin C, et al. 1997,Journal of Physics D: Applied Physics, 30: 1356 25 Stankiewicz M, Riu J R I, Ruiz J A, et al. 2004, Journal of Electron Spectroscopy and Related Phenomena,137: 369 26 Liu Z C, Zhang Z M, Hou J. 1996, Environmental Science, 17: 1 (in Chinese) 27 Balog R, Stano M, Lim? ao-Vieira P, et al. 2002, Journal of Chemical Physics, 119: 10396 28 Sailer W, Drexel H, Pelc A, et al. 2002, Chemical Physics Letters, 351: 71 29 Herron J T. 2004, International Journal of Chemical Kinetics, 19: 129 30 Singleton D L, Cvetanovic R J. 1988, Journal of Physical and Chemical Reference Data, 17: 1377 31 Plumb I C, Ryan K R. 1989, Plasma Chemistry & Plasma Processing, 9: 409 32 DeMore W B, Sander S P, Golden D M, et al. 1994,Chemical kinetics and photochemical data for use in stratospheric modeling. JPL Publication 94-26 33 Butkovskaya N I, Larichev M N, Leipunskii I O, et al.1980, Kinet. Catal., 21: 263 34 Tsai C, Mcfadden D L. 1989, Journal of Physical Chemistry, 93: 6 35 Pagsberg P, Jodkowski J T, Ratajczak E, et al. 1998,Chemical Physics Letters, 286: 138 36 Sun B, Pan X X, Hou J. 2002, Environmental Science,23: 23 (in Chinese) 37 Wang J R. 1994, Organo-Fluorine Industry, 1994: 7(in Chinese) 38 Richter H, Vandooren J, Tiggelen P J V. 1994, Symposium on Combustion, 25: 825 39 Weik F, Lllenberger E. 1995, Journal of Chemical Physics, 103: 1406 40 Zhang Z T. 2003, Atmospheric pressure narrow gap DBD plasma source and the applied basic research [Ph.D]. Dalian Maritime University, Dalian (in Chinese) 41 Jameson C J, Jameson A K, Smith N C. 1987, Journal of Chemical Physics, 86: 6833 42 Xu X, Rauf S, Kushner M J. 2000, J. Vac. Sci. Technol.A, 18: 213 43 Radoiu M T. 2003, Environ. Sci. Technol., 37: 3985 44 Tanthapanichakoon W, Charinpanitkul T, Chaiyo S,et al. 2004, Chemical Engineering Journal, 97: 213 45 Tachikawa H. 2001, Chemical Physics, 273: 149 46 Kuroki T, Mine J, Okubo M, et al. 2005, IEEE Transactions on Industry Applications, 41: 215 47 Atkinson R. 1997, Journal of Physical and Chemical Reference Data, 26: 215
  • Related Articles

    [1]Minglei WANG, Lin ZHANG, Wenqi LU, Guoqiang LIN. Plasma diagnosis of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition[J]. Plasma Science and Technology, 2023, 25(6): 065506. DOI: 10.1088/2058-6272/acb2ac
    [2]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [3]Zun ZHANG (张尊), Kan XIE (谢侃), Jiting OUYANG (欧阳吉庭), Ning GUO (郭宁), Yu QIN (秦宇), Qimeng XIA (夏启蒙), Song BAI (白松), Xianming WU (吴先明), Zengjie GU (谷增杰). Steady and oscillatory plasma properties in the near-field plume of a hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 24010-024010. DOI: 10.1088/2058-6272/aa9d7d
    [4]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [5]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [6]S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07
    [7]CAO Lihua(曹莉华), WANG Huan(王欢), ZHANG Hua(张华), LIU Zhanjun(刘占军), WU Junfeng(吴俊峰), LI Baiwen(李百文). Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma[J]. Plasma Science and Technology, 2014, 16(11): 1007-1012. DOI: 10.1088/1009-0630/16/11/03
    [8]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [9]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
    [10]Wu Di (吴迪), Lei Ming Kai (雷明凯), Zhu Xiao Peng (朱小鹏), Gong Ye (宫野). Numerical Study on the Two-Dimensional Temperature Fields of Titanium/Aluminum Double-Layer Target Irradiated by High-Intensity Pulsed Ion Beam[J]. Plasma Science and Technology, 2010, 12(5): 581-584.

Catalog

    Article views (362) PDF downloads (864) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return