Advanced Search+
DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
Citation: DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17

Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation

Funds: supported by National Natural Science Foundation of China (Nos. 11505019, 21173028), the Science and Technology Research Project of Liaoning Provincial Education Department (No. L2013464), the Scientific Research Foundation for the Doctor of Liaoning Province (No. 20131004), and the Dalian Jinzhou New District Science and Technology Plan Project (No. KJCX-ZTPY-2014-0001)
More Information
  • Received Date: September 08, 2015
  • Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25-P) with the assistance of the deposition-precipitation procedure. The influences of the plasma reduction time and calcination on the performance of the Au/P25-P catalysts were investigated. CO oxidation was performed to investigate the catalytic activity of the Au/P25 catalysts. The results show that DBD cold plasma for the fabrication of Au/P25-P catalysts is a fast process, and Au/P25-P (4 min) exhibited the highest CO oxidation activity due to the complete reduction of Au compounds and less consumption of oxygen vacancies. In order to form more oxygen vacancies active species, Au/P25-P was calcined to obtain Au/P25-PC catalysts. Interestingly, Au/P25-PC exhibited the highest activity for CO oxidation among the Au/P25 samples. The results of transmission electron microscopy (TEM) indicated that the smaller size and high distribution of Au nanoparticles are the mean reasons for a high performance of Au/P25-PC. Atmospheric-pressure DBD cold plasma was proved to be of great efficiency in preparing high performance supported Au catalysts.
  • 1 Zhou Y, Wang Z Y, Liu C J. 2015, Catalysis Science & Technology, 5: 69 2 Klein A N, Cardoso R P, Pavanati H C. 2013, Plasma Science and Technology, 15: 70 3 Buitrago-Sierra R, Garc′ ?a-Fernández M J, Pastor-Blas M M, et al. 2013, Green Chemistry, 15: 1981 4 Zhang X L, Di L B, Zhou Q. 2013, Journal of Energy Chemistry, 22: 446 5 Xu H Y, Luo J J and Chu W. 2014, RSC Advances,4: 25729 6 Sawada Y, Taguchi N and Tachibana K. 1999,Japanese Journal of Applied Physics, 38: 2539 7 Xu Z J, Qi Bin, Di L B, et al. 2014, Journal of Energy Chemistry, 23: 679 8 Di L B, Xu Z J, Wang K, et al. 2013, Catalysis Today, 211: 109 9 Cheng T, Fang Z Y, Hu Q X, et al. 2007, Catalysis Communication, 8: 1167 10 Chen M S, Goodman D W. 2004, Science, 306: 252 11 Jia C J, Liu Y, Bongard H, et al. 2010, Journal of the American Chemical Society, 132: 1520 12 Huang Y Q, Wang A Q, Wang X D, et al. 2007, International Journal of Hydrogen Energy, 32: 3880 13 Haruta M, Yamada N, Kobayashi T, et al. 1989, Journal of Catalysis, 115: 301 14 Schubert M M, Hackenberg S, van Veen A C, et al. 2001, Journal of Catalysis, 197: 113 15 Qi B, Di L B, Xu W J, et al. 2014, Journal of Materials Chemistry A, 2: 11885 16 Xu W J, Zhan Z B, Di L B, et al. 2015, Catalysis Today, 256: 148 17 Di L B, Xu W J, Zhan Z B, et al. 2015, RSC Advances, 5: 71854 18 Bond G C, Thompson D T. 1999, Catalysis Reviews Science and Engineering, 41: 319 19 Bokhimi X, Zanella R, Morales A. 2007, Journal of Physical Chemistry C, 111: 15210 20 Fan H Y, Shi C, Li X S, et al. 2012, Applied Catalysis B: Environmental, 119-120: 49 21 Di L B, Zhang X L, Xu Z J. 2014, Plasma Science and Technology, 16: 41 22 Romero-Sarria F, Plata J J, Laguna O H, et al. 2014, RSC Advances, 4: 13145 23 Akita T, Lu P, Ichikawa S, et al. 2001, Surface and Interface Analysis, 31: 73
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [6]DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11
    [7]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [8]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [9]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01

Catalog

    Article views (389) PDF downloads (644) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return