Advanced Search+
JIAO Juntao (焦俊韬), XIAO Dengming (肖登明), ZHAO Xiaoling (赵小令), DENG Yunkun (邓云坤). Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength[J]. Plasma Science and Technology, 2016, 18(5): 554-559. DOI: 10.1088/1009-0630/18/5/19
Citation: JIAO Juntao (焦俊韬), XIAO Dengming (肖登明), ZHAO Xiaoling (赵小令), DENG Yunkun (邓云坤). Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength[J]. Plasma Science and Technology, 2016, 18(5): 554-559. DOI: 10.1088/1009-0630/18/5/19

Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

Funds: supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)
More Information
  • Received Date: September 08, 2015
  • It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alterna¬tive gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method.
  • 1 Christophorou L G, Olthoff J K. 2000, J. Phys. Chem.Ref. Data, 29: 267 2 Qiu Y, Feng Y P. 1996, Investigation of SF 6 -N 2,SF 6 -CO 2 and SF 6 -air as substitutes for SF 6 insulation. Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal,Jun.16-19 1996, 2: 766 3 Christophorou L G. 1980, Gaseous Dielectrics II. Pergamon, New York 4 Urquijo J De, Ju′ arez A M, Basurto E, et al. 2007, J.Phys. D: Appl. Phys., 40: 2205 5 Kasuya H, Kawamura Y, Mizoguchi H, et al. 2010,IEEE Transactions on Dielectrics and Electrical Insu- lation, 17: 1196 6 Franck C M, Dahl D A, Rabie M, et al. 2014, Contributions to Plasma Physics, 54: 3 7 Yamamoto O, Takuma T, Hamada S, et al. 2001, IEEE Transactions on Dielectrics and Electrical Insulation,8: 1075 8 Katagiri H, Kasuya H, Mizoguchi H, et al. 2008, IEEE Transactions on Dielectrics and Electrical Insulation,15: 1424. 9 Ngoc M N, Denat A, Bonifaci N, et al. 2009, Electrical breakdown of CF 3 I and CF 3 I-N 2 gas mixtures.IEEE Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA. Oct. 18-21 2009,P.557 10 Duan Y Y, Zhu M S, Han L Z. 1996, Fluid Phase Equilibria, 121: 227 11 Christophorou L G, Olthoff J K, Rao M. 1996, J. Phys.Chem. Ref. Data, 25: 1341 12 Bordage M C, S′ egur P, Christophorou L G, et al. 1999,J. Appl. Phys, 86: 3558 13 Deng Y K, Xiao D M. 2014, Japanese Journal of Applied Physics, 53: 096201 14 Deng Y K, Xiao D M. 2012, The European Physical Journal Applied Physics, 57: 20801 15 Deng Y K, Xiao D M. 2013, Chinese Physics B, 22:035101 16 Wu Y, Wang W Z, Rong M Z, et al. 2014, IEEE Transactions on Dielectrics and Electrical Insulation, 21:129 17 Sun H, Rong M Z, Wu Y, et al. 2015, J. Phys. D: Appl.Phys., 48: 055201 18 Braun M, Marienfeld S, Ruf M W, et al. 2009, Journal of Physics B: Atomic, Molecular and Optical Physics,42: 125202 19 Rabie M, Franck C M. 2013, Predicting the electric strength of proposed SF 6 replacement gases by means of density functional theory. 18th International Symposium on High Voltage Engineering, Seoul 20 Christophorou L G. 1988, Nuclear Instruments and Methods in Physics Research Section A, 268: 424 21 Olivet A, Duque D, Vega L F. 2007, J. Appl. Phys.,101: 023308 22 Stewart J J P. 1989, Journal of Computational Chemistry, 10: 209 23 Curtiss L A, Raghavachari K, Redfern P C, et al. 1997,Chemical Physics Letters, 270: 419 24 Becke A D. 1993, The Journal of Chemical Physics, 98: 5648 25 Stephens P J, Devlin F J, Chabalowski C F, et al.1994, The Journal of Physical Chemistry, 98: 11623 26 Christophorou L G, Olthoff J K. 2002, Applied Surface Science, 192: 309 27 Devins J C. 1980, IEEE Transactions on Electrical Insulation, EI-15: 81 28 Heylen A E D, Lewis T J. 1958, Canadian Journal of Physics, 36: 721 29 Heylen A E D, Lewis T J. 1956, British Journal of Applied Physics, 7: 411 30 Christophorou L G, Olthoff J K, Green D S. 1997, Gases for electrical insulation and arc interruption: possible present and future alternatives to pure SF 6 . National Institute of Standards and Technology, US Department of Commerce, Technology Administration, USA
  • Related Articles

    [1]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [2]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [3]Peifang YANG (杨培芳), Chao YE (叶超), Xiangying WANG (王响英), Jiamin GUO (郭佳敏), Su ZHANG (张苏). Control of growth and structure of Ag films by the driving frequency of magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(8): 85504-085504. DOI: 10.1088/2058-6272/aa6619
    [4]ZHAO Xiaoling (赵小令), JIAO Juntao (焦俊韬), LI Bing (李冰), XIAO Dengming (肖登明). The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6 [J]. Plasma Science and Technology, 2016, 18(3): 292-298. DOI: 10.1088/1009-0630/18/3/13
    [5]WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15
    [6]CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15
    [7]ZHU Daoyun (朱道云), ZHENG Changxi (郑昌喜), CHEN Dihu (陈弟虎), HE Zhenhui (何振辉). Plasma-Neutral Gas Structure in a Magnesium Cathodic Arc Operating at Oxygen Gas with Experimental Comparison[J]. Plasma Science and Technology, 2013, 15(11): 1116-1121. DOI: 10.1088/1009-0630/15/11/08
    [8]Yu Beibei (于蓓蓓), Zhu Lihua (竺礼华), He Chuangye (贺创业), Wu Xiaoguang (吴晓光), Zheng Yun (郑云), Li Guangsheng (李广生), Wang Lielin (王烈林), Yao Shunhe (姚顺和), Zhang Biao (张彪), Xu Chuan (徐川), Hao Xin, et al. High Spin Structure in 106Pd[J]. Plasma Science and Technology, 2012, 14(6): 531-533. DOI: 10.1088/1009-0630/14/6/22
    [9]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [10]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02

Catalog

    Article views (326) PDF downloads (779) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return