Advanced Search+
ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
Citation: ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09

Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind

Funds: supported by National Natural Science Foundation of China (Nos. 11175017 and 11475019)
More Information
  • Received Date: August 23, 2015
  • The electrical and mechanical characteristics of the wire-to-plate surface dielectric barrier discharge and the induced ionic wind are investigated experimentally. The different tempo?ral behaviors in positive and negative half-cycles are studied by time-resolved images. It is shown that the discharge and the light emission are generally stronger in the positive half cycle. The discharge is inhomogeneous and propagates in streamer mode; however, in the negative half-cycle, the discharge appears visually uniformly and operates in the diffuse mode. The surface discharge can produce ionic wind about several m/s above the dielectric surface. There exists an optimal width of the grounded electrode to produce a larger plasma area or active wind region. Increas?ing of the applied voltage or normalized dielectric constant leads to a larger wind velocity. The performance of ionic wind on flow control is visualized by employing a smoke stream.
  • 1 Moreau E. 2007, J. Phys. D: Appl. Phys., 40: 605 2 Mestiri R, Hadaji R, Nasrallah S B. 2010, Phys. Plasmas, 17: 083503 3 Benard N, Balcon N, Moreau E. 2008, J. Phys. D:Appl. Phys., 41: 042002 4 Thomas F O, Corke T C, Iqbal M, et al. 2009, AIAA J., 47: 2169 5 Corke T C, Post M L, Orlov D M. 2007, Progress in Aerospace Sciences, 43: 193 6 Roth J R. 2003, Phys. Plasmas, 10: 2117 7 Benard N, Moreau E. 2010, J. Phys. D: Appl. Phys.,43: 145201 8 Enloe C L, McLaughlin T E, Van Dyken R D, et al.2004, AIAA J., 42: 589 9 Boeuf J P, Pitchford L C. 2005, J. Appl. Phys., 97:103307 10 Boeuf J P, Lagmich Y, Callegari T, et al. 2006, Electrohydrodynamic force and acceleration in surface discharges. In 37th AIAA Pasmasdynamics and Lasers Conference. San Francisco, California 11 Boeuf J P, Lagmich Y, Unfer T, et al. 2007, J. Phys.D: Appl. Phys., 40: 652 12 Huang P G, Shang J S, Stanfield S A. 2011, AIAA J.,49: 119 13 Boeuf J P, Lagmich Y, Pitchford L C. 2009, J. Appl.Phys., 106: 023115 14 Jolibois J, Forte M, Moreau E. 2008, J. Electrost., 66:496 15 Moreau E, Louste C, Touchard G. 2008, J. Electrost.,66: 107 16 Sujar-Garrido P, Benard N, Moreau E. 2015, Exp. Fluids, 56: 1 17 Magnier P, Hong D, Leroy-Chesneau A, et al. 2007,Exp. Fluids, 42: 815 18 Debien A, Benard N, David L, et al. 2012, Appl. Phys.Lett., 100: 013901 19 Debien A, Benard N, Moreau E. 2012, J. Phys. D:Appl. Phys., 45: 215201 20 Benard N, Debien A, Moreau E. 2013, J. Phys. D:Appl. Phys., 46: 245201 21 Benard N, Moreau E. 2014, Exp. Fluids, 55: 1 22 Jolibois J, Zouzou N, Moreau E, et al. 2011, J. Electrost., 69: 522 23 Orlov D M, Font G I, Edelstein D. 2008, AIAA J., 46:3142 24 Ouyang J, Feng C, Huang H, et al. 1998, J. Appl.Phys., 84: 6943 25 Ouyang J. 1999. Chin. Phys. Lett., 16: 574 26 Zhang Y, Liu L, Ouyang J. 2014, J. Electrost., 72: 76 27 Mestiri R, Hadaji R, Nasrallah S B. 2008, Desalination, 220: 468 28 Forte M, Jolibois J, Pons J, et al. 2007, Exp. Fluids, 43: 917

Catalog

    Article views (397) PDF downloads (665) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return