Advanced Search+
SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16
Citation: SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16

Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control

Funds: supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)
More Information
  • Received Date: May 04, 2015
  • Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coef¬fficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.
  • 1 Wu Y, Li Y H. 2015, Acta Aeronautica et Astronautica Sinica, 36: 381 (in Chinese) 2 Benard N, Mizuno A, Moreau E. 2009, Journal of Physics D: Applied Physics, 42: 5204 3 Popkin S H, Cybyk B Z, Land III H B, et al. 2013, Recent performance based advances in SparkJet actuator design for supersonic flow applications. AIAA, Reston, AIAA-2013-0322 4 Corke T C, Enloe C L, Wilkinson S P. 2010, Annual Review of Fluid Mechanics, 42: 505 5 Jin D, Li Y H, Jia M, et al. 2013, Plasma Science and Technology, 15: 1034 6 Han M H, Li J, Liang H, et al. 2015, Plasma Science and Technology, 17: 502 7 Benard N, Moreau E. 2012, EHD force and electric wind produced by surface dielectric barrier discharge plasma actuator used for airflow control. AIAA, Reston, AIAA-2012-3136 8 Sun M, Yang B, Zhang Z T, et al. 2013, Surface and Coatings Technology, 228: 179 9 Zhang P F, Wang J J, Shi W Y, et al. 2007, Journal of Experiments in Fluid Mechanics, 21: 35 (in Chinese) 10 Kelley C L, Bowles P and Cooney J, et al. 2012, High Mach number leading edge flow separation control using AC DBD plasma actuators. AIAA, Reston, AIAA-2012-0906 11 Font G I, Enloe C L, Newcomb J Y, et al. 2011, AIAA Journal, 49: 1366 12 Zhu Y F, Wu Y, Cui W, et al. 2013, Acta Aeronautica et Astronautica Sinica, 34: 2081 (in Chinese) 13 Song H M, Zhang Y G, Li Y H, et al. 2012, Plasma Science and Technology, 14: 327 14 Wang J J, Choi K S, Feng L H, et al. 2013, Progress in Aerospace Sciences, 62: 52 15 Wu Y, Li Y H, Liang H, et al. 2014, Nanosecond pulsed discharge plasma actuation: characteristics and perfor- mance, AIAA, Reston, AIAA-2014-2118 16 Kotsonis M, Ghaemi S. 2012, Journal of Physics D: Applied Physics, 45: 045204 17 Che X K, Shao T, Nie W S, et al. 2012, Journal of Physics D: Applied Physics, 45: 145201 18 Li Y H, Liang H, Ma Q Y, et al. 2008, Acta Aeronautic et Astronautica Sinica, 29: 1429 (in Chinese) 19 Zhang Z T. 2003, Study of the narrow discharge Gap DBD plasma source at atmospheric pressure and its basic application [Ph.D]. Northeastern University, Shenyang (in Chinese) 20 Bouef J P, Pitchford L C. 2005, Journal of Applied Physics, 97: 103307 21 Font G I, Morganand W L. 2005, Plasma discharges in atmospheric pressure oxygen for boundary layer separa- tion control, AIAA, Reston, AIAA-2005-4632 22 Font G I, Morganand W L. 2007, AIAA Journal, 47:103 23 Font G I. 2006, AIAA Journal, 44: 1572
  • Related Articles

    [1]LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
    [2]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Kun LU (陆坤), Zhongwei WANG (王忠伟), Jianfeng ZHANG (张剑峰), Yongfa QIN (秦永法). Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder[J]. Plasma Science and Technology, 2017, 19(4): 45601-045601. DOI: 10.1088/2058-6272/aa57ec
    [3]DU Hongfei (杜红飞), CHEN Dehong (陈德鸿), DUAN Wenxue (段文学), JIANG Jieqiong (蒋洁琼), WU Yican (吴宜灿), FDS Team. Physics Analysis and Optimization Studies for a Fusion Neutron Source Based on a Gas Dynamic Trap[J]. Plasma Science and Technology, 2014, 16(12): 1153-1157. DOI: 10.1088/1009-0630/16/12/12
    [4]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11
    [5]KANG Weishan(康伟山), YUAN Tao(袁涛), SUN Qian(孙倩), WU Jihong(吴继红), CHEN Jiming(谌继明). Numerical Analyses of Electromagnetic Forces on the ITER Blanket Module Shield Block During Major Disruptions[J]. Plasma Science and Technology, 2014, 16(7): 701-705. DOI: 10.1088/1009-0630/16/7/12
    [6]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), XU Yang (徐杨), FENG Changle (冯昌乐). Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block[J]. Plasma Science and Technology, 2013, 15(4): 391-396. DOI: 10.1088/1009-0630/15/4/15
    [7]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [8]WANG Songke (王松可), SONG Yuntao (宋云涛), XIE Han (谢韩), LEI Mingzhun (雷明准). Thermal-Structural Coupled Analysis of ITER Torus Cryo-Pump Housing[J]. Plasma Science and Technology, 2012, 14(11): 1011-1016. DOI: 10.1088/1009-0630/14/11/10
    [9]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), DU Shijun (杜世俊), YE Minyou (叶民友), XI Weibin(奚维斌), LIU Xufeng (刘旭峰), LIU Chen (刘辰). Preliminary Thermal Mechanical Analysis of the Equatorial Thermal Shield for ITER[J]. Plasma Science and Technology, 2012, 14(10): 932-635. DOI: 10.1088/1009-0630/14/10/14
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18

Catalog

    Article views (315) PDF downloads (508) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return