Advanced Search+
WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
Citation: WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06

Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

Funds: supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)
More Information
  • Received Date: June 23, 2015
  • Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas’ thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma.
  • 1 Murphy A B. 1995, Plasma Chemistry and Plasma Processing, 15: 279 2 Sun Hao, Rong Mingzhe, Chen Zhexin, et al. 2014, IEEE Transactions on Plasma Science, 42: 2706 3 Ren Zhigang, Wu Mingliang, Yang Fei, et al. 2014, IEEE Transactions on Plasma Science, 42: 2712 4 Murphy A B. 2014, Scientiˉc Reports, 4: 4304 5 Capitelli M, Colonna G, Gorse C, et al. 2000, The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 11: 279 6 Wang Weizong, Wu Yi, Rong Mingzhe, et al. 2012,Acta Phys. Sin., 61: 105201 (in Chinese) 7 D'Angola A, Colonna G, Bonomo A, et al. 2012, The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 66: 205 8 Kagone A K, Koalaga Z, Zougmore F. 2011, Calculation of air-water vapor mixtures thermal plasmas transport coe±cients. 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA), Ouagadougou, BURKINA FASO, IOP Publishing, England 9 Cambi R, Cappelletti D, Liuti G, et al. 1991, The Journal of Chemical Physics, 95: 1852 10 Gleizes A, Razafinimanana M, Vacquie S. 1983, Journal of Applied Physics, 54: 3777 11 Coufal O, Sezemsky P, ?Zivny O. 2005, Journal of Physics D: Applied Physics, 38: 1265 12 Coufal O. 2007, Journal of Physics D: Applied Physics,40: 3371 13 Coufal O, ?Zivny O. 2011, The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 61: 131 14 Moore C E. 1949, Atomic Energy Levels. Natl. Bur.Stand, Washington, DC, USA 15 Ralchenko Y, Kramida A E, Reader J. 2010, Team 2008 NIST Atomic Spectra Database. National Institute of Standards and Technology, Gaithersburg, MD 16 Capitelli M, Colonna G and D'Angola A. 2012, Fundamental Aspects of Plasma Chemical-Physics: Thermodynamics, Springer Series on Atomic, Optics and Plasma Physics, 66: 101 17 Bacri J and Ra?anel S. 1987, Plasma Chemistry and Plasma Processing, 7: 54 18 Milone Luis A and Merlo David C. 1998, Astrophysics and Space Science, 359: 173 19 Drellishak K S, Aeschliman D P, and Ali Bulent Cambel. 1965, Physics of Fluids, 8: 1590 20 D'Angola A, Colonna G, Gorse C, et al. 2008, The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 46: 129 21 Colonna G, D'Angola A, Laricchiuta A, et al. 2013,Plasma Chemistry Plasma Processing, 33: 401 22 Chapman S, Cowling T G. 1970, The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, UK 23 Hirschfelder Joseph O, Curtiss Charles F, Byron Bird R, et al. 1954, Molecular Theory of Gases and Liquids.Reed Business Information, USA 24 Devoto R S. 1967, Physics of Fluids, 10: 2105 25 Devoto R S. 1967, Physics of Fluids, 10: 2704 26 Bonnefoi C. 1983, Contribution to the study of methods for solving the Boltzmann equation in a plasma at two temperatures: example of argon-hydrogen mixture [Ph.D]. University of Limoges, France 27 Colombo V, Ghedini E, Sanibondi P. 2009, Journal of Physics D: Applied Physics, 42: 055213 28 Butler J N and Brokaw R S. 1957, The Journal of Chemical Physics, 26: 1636 29 Capitelli M, Cappelletti D, Colonna G, et al. 2007, Chemical Physics, 338: 62 30 Laricchiuta A, Colonna G, Bruno D, et al. 2007, Chemical Physics Letters, 445: 133 31 Lombardi Andrea, Federico Palazzetti. 2008, Journal of Molecular Structure: THEOCHEM, 852: 22 32 Johnson III, Russell D. 2005, NIST Computational Chemistry Comparison and Benchmark Database, http://srdata.nist.gov/cccbdb 33 Murphy A B, Arundelli C J. 1994, Plasma Chemistry and Plasma Processing, 14: 451 34 Copeland F B M, Crothers D S F. 1997, Atomic Data and Nuclear Data Tables, 65: 273 35 Laricchiuta A, Bruno D, Capitelli M, et al. 2009, The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 54: 607 36 Bordage database, www.lxcat.net, retrieved on October 15, 2014 37 Capitelli M, Gorse C, Longo S, et al. 2000, Journal of thermophysics and Heat Transfer, 14: 259 38 Devoto R S. 1973, Physics of Fluids, 16: 616 39 Murphy A B. 2000, Plasma Chemistry and Plasma Processing, 20: 279 40 Libo? R L 1959. Physics of Fluids, 2: 1 41 Cressault Y, Connord V, Hingana H, et al. 2011. Journal of Physics D: Applied Physics, 44: 495202
  • Related Articles

    [1]Xin ZHANG (张欣), Heng LI (李恒), Yuhong XU (许宇鸿), Qijun LIU (刘其军), Yangyang LIU (刘洋阳), Zilin CUI (崔子麟), Haifeng LIU (刘海峰), Xianqu WANG (王先驱), Jie HUANG (黄捷), Hai LIU (刘海), Jun CHENG (程钧), Ming LI (李明), Shaofei GENG (耿少飞), Changjian TANG (唐昌建), Guangjiu LEI (雷光玖). First-principles study on the mechanical properties and thermodynamic properties of Mo–Ta alloys[J]. Plasma Science and Technology, 2020, 22(6): 65601-065601. DOI: 10.1088/2058-6272/ab78bc
    [2]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754
    [3]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [4]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [5]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [6]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [7]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [8]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [9]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.

Catalog

    Article views (449) PDF downloads (1265) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return