Advanced Search+
CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
Citation: CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10

Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma

Funds: supported by National Natural Science Foundation of China (No. 11405271)
More Information
  • Received Date: October 13, 2015
  • The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.
  • 1 Carter M D, Baity F W, Barber G C, et al. 2002, Physics of Plasmas, 9: 5097 2 Boswell R W. 1970, Physics Letters, 33A: 457 3 Boswell R W. 1984, Plasma Physics and Controlled Fusion, 26: 1147 4 Scime E E, Keesee A M, Boswell R W. 2008, Physics of Plasmas, 15: 058301 5 Areev A V, Breizman B N. 2004, Physics of Plasmas, 11: 2942 6 Ziemba T, Carscadden J, Slough J, et al. 2005, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, USA 7 Charles C. 2009, Journal of Physics D: Applied Physics, 42: 163001 8 Batishchev O V. 2009, IEEE Transactions on Plasma Science, 37: 1563 9 Loewenhardt P K, Blackwell B D, Boswell R W, et al. 1991, Physical Review Letters, 67: 2792 10 Hanna J, Watts C. 2001, Physics of Plasmas, 8: 4251 11 Petrzilka V, Tataronis J A. 1994, Plasma Physics and Controlled Fusion, 36: 1027 12 Zhu P, Boswell R W. 1989, Physical Review Letters, 63: 2805 13 Chen F F. 1996, Physics of Plasmas, 3: 1783 14 Chen F F. 1991, Plasma Physics and Controlled Fusion, 33: 339 15 Chen F F, Hsieh M J, Light M. 1994, Plasma Sources Science and Technology, 3: 49 16 Boswell R W, Chen F F. 1997, IEEE Transactions on Plasma Science, 25: 1229 17 Chen F F, Boswell R W. 1997, IEEE Transactions on Plasma Science, 25: 1245 18 Chen F F. 1997, Physics of Plasmas, 4: 3411 19 Arnush D, Chen F F. 1998, Physics of Plasmas, 5: 1239 20 Breizman B N, Areev A V. 2000, Physical Review Letters, 84: 3863 21 Panevsky M I, Bengtson R D. 2004, Physics of Plasmas, 11: 4196 22 Chang L, Hole M J, Caneses J F, et al. 2012, Physics of Plasmas, 19: 083511 23 Chen F F, Blackwell D D. 1999, Physical Review Letters, 29: 2677 24 Kr?amer M, Enk Th, Lorenz B. 2000, Physica Scripta, T84: 132 25 Chen G, Areˉev A V, Bengtson R D, et al. 2006, Physics of Plasmas, 13: 123507 26 Komori A, Shoji T, Miyamoto K, et al. 1991, Physics of Fluids B, 3: 893 27 Shoji T, Sakawa Y, Nakazawa S, et al. 1993, Plasma Sources Science and Technology, 2: 5 28 Keiter P A, Scime E E, Balkey M M. 1997, Physics of Plasmas, 4: 2741 29 Blevin H A, Christiansen P J. 1966, Australian Journal of Physics, 19: 501 30 Aliev Yu M, Kramer M. 2011, 38th EPS Conference on Plasma Physics (P4. 040), Strasbourg, France 31 Arnush D. 2000, Physics of Plasmas, 7: 3042 32 Shamrai K P, Pavlenko V P, Taranov V B. 1997, Plasma Physics and Controlled Fusion, 39: 505
  • Related Articles

    [1]Mingyang WU, Chijie XIAO, Xiaogang WANG, Yue LIU, Min XU, Chang TAN, Tianchao XU, Xiuming YU, Renchuan HE, Andong XU. Relationship of mode transitions and standing waves in helicon plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055002. DOI: 10.1088/2058-6272/ac567d
    [2]Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
    [3]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [4]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [5]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [6]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [7]Y WANG (王宇), G ZHAO (赵高), C NIU (牛晨), Z W LIU (刘忠伟), J T OUYANG (欧阳吉庭), Q CHEN (陈强). Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field[J]. Plasma Science and Technology, 2017, 19(2): 24003-024003. DOI: 10.1088/2058-6272/19/2/024003
    [8]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [9]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02

Catalog

    Article views (309) PDF downloads (670) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return