Advanced Search+
Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004
Citation: Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004

Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel

Funds: This work is supported by the National ITER project Foundation of China (Nos. 2013GB106001 and 2013GB106003).
More Information
  • Received Date: June 30, 2016
  • Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. The dependences of the dispersion frequencies of electromagnetic waves on the electron beam radius, betatron frequency and boundary current are revealed. It is found that the electron beam radius and betatron frequency have different influences on the electromagnetic waves dispersion behavior by compared with the previous works. As the boundary current is taken into account, the TM modes will have two branches and a low-frequency branch emerged as the new branch in strong ion channel case. This new branch has similar dispersion behavior to the betatron modes. For TE modes, there are two branches and they have different dispersion behaviors in strong ion channel case. However, in weak ion channel case, the dispersion behaviors for both of the low frequency and high frequency branches are similar.
  • [1]
    Kuzelev M V et al 2001 Plasma Phys. Rep. 27 669
    [2]
    Kuzelev M V and Rukhadze A A 2001 Plasma Phys. Rep. 26 231
    [3]
    Maraghechi B et al 1994 Phys. Plasmas 1 3181
    [4]
    Goebel D M, Carmel Y and Nusinovich G S 1999 Phys. Plasmas 6 2225
    [5]
    Nowakowska H et al 2011 IEEE Trans. Plasma Sci. 39 1935
    [6]
    Liming G et al 2014 Phys. Plasmas 21 073106
    [7]
    Bayat S et al 2014 Phys. Control. Fusion 56 125009
    [8]
    Datta S K, Kumar L and Basu B 2011 IEEE Trans. Electron Devices 58 882
    [9]
    Turnbull D et al 2012 Phys. Plasmas 19 073103
    [10]
    Dodin I Y and Fisch N J 2008 Phys. Plasmas 15 103105
    [11]
    Tzoufras M et al 2008 Phys. Rev. Lett. 101 145002
    [12]
    Jain N et al 2015 Phys. Plasmas 22 023103
    [13]
    Miller Joel D and Gilgenbach Ronald M 1990 IEEE Trans. Plasma Sci. 18 658
    [14]
    Whittum D H et al 1991 Phys. Rev. Lett. 67 991
    [15]
    Taghavi A, Esmaeilzadeh M and Fallah M S 2010 Phys. Plasmas 17 093102
    [16]
    Wu J 2004 IEEE Trans. Plasma Sci. 32 1200
    [17]
    Shlapakovski A S and Krasnitskiy M Y 2008 Plasma Phys. Rep. 34 31
    [18]
    Shenggang L et al 2000 IEEE Trans. Plasma Sci. 28 2153
    [19]
    Dong S and Changjian T 2009 Phys. Plasmas 16 053101
    [20]
    Jixiong X et al 2014 Plasma Sci. Technol. 16 1
    [21]
    Rouhani M H and Maraghechi B 2006 Phys. Plasmas 13 083101
    [22]
    Aghamir F M and Almasi H 2011 IEEE Trans. Plasma Sci. 39 1800
    [23]
    Wenjie F and Yang Y 2013 Plasma Sci. Technol. 15 974
    [24]
    Jackson J D 1999 Classical Electrodynamics 3rd edn (Hoboken: Wiley)
    [25]
    Mirzanejhad S and Maraghechi B 1998 Phys. Plasmas 5 4017
    [26]
    Hairong L, Changjian T and Pukun L 2007 J. Phys. D: Appl. Phys. 40 2002
    [27]
    Miller R B 1982 An Introduction to the Physics of Intense Charged Particle Beams (New York: Plenum)
    [28]
    Dong S, Changjian T and Pukun L 2007 Acta Phys. Sin. 56 2802-7 (in Chinese)

Catalog

    Article views (307) PDF downloads (841) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return