Advanced Search+
Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
Citation: Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504

Analysis of the operating parameters of a vortex electrostatic precipitator

Funds: This work was sponsored by the National Natural Science Foundation of China (grant no. 51278229) and the Six Talent Peak Project of Jiangsu Province (grant no. JNHB-018).
More Information
  • Received Date: April 25, 2016
  • A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s−1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.
  • [1]
    Jianlin H et al 2014 Atmos. Environ. 95 598
    [2]
    De Longueville F et al 2014 Water Air Soil Pollut. 225 2186
    [3]
    Yang S et al 2015 Combin. Chem. High Throughput Screening 19 100
    [4]
    Alolayan M A et al 2013 Sci. Total Environ. 448 14
    [5]
    PuiDYH,Chen SCandZuoZ 2014 Particuology 13 1
    [6]
    Choi J K et al 2013 Sci. Total Environ. 447 370
    [7]
    Dabek-Zlotorzynska E et al 2011 Atmos. Environ. 45 673
    [8]
    Ze Z et al 2013 J. Hepatol. 58 148
    [9]
    Cheng Y H, Chang H P and Hsieh C J 2011 Atmos. Environ. 45 2034
    [10]
    Leem J H, Kim S T and Kim H C 2015 Ann. Occup. Environ. Med. 27 1
    [11]
    Yu S et al 2013 Environ. Int. 54 100
    [12]
    Nasser Z et al 2015 Int. J. Occup. Med. Environ. Health 28 641
    [13]
    Ziyi L et al 2015 Environ. Sci. Technol. 49 8683
    [14]
    Jibao Z et al 2012 J. Electrost. 70 285
    [15]
    Thonglek V and Kiatsiriroat T 2013 J. Electrost. 72 33
    [16]
    Jaworek A et al 2013 J. Electrost. 71 345
    [17]
    Chengwu Y et al 2010 IEEE Int. Conf. on Mechanic Automation & Control Engineering vol 6 p2038
    [18]
    Chengwu Y et al 2010 Environ. Eng. 28 49 (in Chinese)
    [19]
    Shuai M et al 2011 IEEE Int. Conf. on Multimedia Technology (ICMT) vol 7 p 4714
    [20]
    Congxiang L et al 2014 Mech. Eng. 11 52 (in Chinese)
  • Related Articles

    [1]Bei LIU, Hua LIANG, Borui ZHENG. Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing[J]. Plasma Science and Technology, 2023, 25(1): 015503. DOI: 10.1088/2058-6272/ac7cb8
    [2]Hai DU (杜海), LeiWANG (王磊), Wenjie KONG (孔文杰), Zhiwei SHI (史志伟), Keming CHENG (程克明), Zheng LI (李铮). Vortex dynamics over an airfoil controlled by a nanosecond pulse discharge plasma actuator at low wind speed[J]. Plasma Science and Technology, 2019, 21(12): 125503. DOI: 10.1088/2058-6272/ab43f5
    [3]Liuxiu HE (何柳秀), Minghai LIU (刘明海), Shuangyun ZHAO (赵双云). Spontaneous magnetic field multipolar structure in toroidal plasmas based on 2D equilibrium[J]. Plasma Science and Technology, 2019, 21(4): 45101-045101. DOI: 10.1088/2058-6272/aaf78d
    [4]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [5]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [6]Chengzhi CAO (曹诚志), Yudong PAN (潘宇东), Zhiwei XIA (夏志伟), Bo LI (李波), Tao JIANG (江涛), Wei LI (李伟). Recent developments in the structural design and optimization of ITER neutral beam manifold[J]. Plasma Science and Technology, 2018, 20(2): 25602-025602. DOI: 10.1088/2058-6272/aa9562
    [7]Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95
    [8]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation[J]. Plasma Science and Technology, 2016, 18(3): 319-324. DOI: 10.1088/1009-0630/18/3/17
    [9]LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21
    [10]CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05

Catalog

    Article views (375) PDF downloads (714) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return