Advanced Search+
Aohua MAO (毛傲华), Yang REN (任洋), Hantao JI (吉瀚涛), Peng E (鄂鹏), Ke HAN (韩轲), Zhibin WANG (王志斌), Qingmei XIAO (肖青梅), Liyi LI (李立毅). Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF[J]. Plasma Science and Technology, 2017, 19(3): 34002-034002. DOI: 10.1088/2058-6272/19/3/034002
Citation: Aohua MAO (毛傲华), Yang REN (任洋), Hantao JI (吉瀚涛), Peng E (鄂鹏), Ke HAN (韩轲), Zhibin WANG (王志斌), Qingmei XIAO (肖青梅), Liyi LI (李立毅). Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF[J]. Plasma Science and Technology, 2017, 19(3): 34002-034002. DOI: 10.1088/2058-6272/19/3/034002

Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF

Funds: This work is supported by the NSFC under Grant Nos. 11261140326, 11275034, 51577043, 11505040, 61402138 and HIT.NSRIF under Grant No. 2017009 and the Natural Science Foundation of Heilongjiang Province (No. E201452).
More Information
  • Received Date: June 29, 2016
  • A new ground-based experimental device, the Space Plasma Environment Research Facility (SPERF), is being designed at Harbin Institute of Technology in China, with Asymmetric REconnection eXperiment-3 Dimensional (AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas. The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet, but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry. These two asymmetries are fundamental features of the reconnection process at the Earth’s magnetopause. In experiment, the reconnection process is driven by a set of flux cores through coil-currentramp-up from the ‘magnetosheath-side’ to interact with a dipole magnetic field generated by the Dipole Research EXperiment (DREX) coil on the ‘magnetosphere-side’. The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth’s magnetopause. A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the ‘magnetosheath-side’ and electron cyclotron resonance (ECR) with microwave sources on the ‘magnetosphere-side’, e.g. high (low) plasma density at experimental magnetosheath (dipole) side. Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms. The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.
  • [1]
    Priest E R 1982 Solar Magnetohydrodynamics ed D Reidel (Dordrecht: Reidel) (https://doi.org/10.1007/978-94-009?7958-1)
    [2]
    Yamada M, Kulsrud R and Ji H 2010 Rev. Mod. Phys. 82 603
    [3]
    Parker E N 1957 J. Geophys. Res. 62 509
    [4]
    Gekelman W, Stenzel R L and Wild N 1982 J. Geophys. Res. 87 101
    [5]
    Ono Y et al 2011 Phys. Rev. Lett. 107 185001
    [6]
    Hoshino M et al 1998 J. Geophys. Res. 103 4509
    [7]
    Aunai N, Belmont G and Smets R 2011 J. Geophys. Res. 116 A09232
    [8]
    Kulsrud R M 1995 Phys. Plasmas 2 1735
    [9]
    Russelland C T and Elphic R C 1979 Geophys. Res. Lett. 6 33
    [10]
    Shi Y, Wu C C and Lee L C 1988 Geophys. Res. Lett. 15 295
    [11]
    Zakharov L, Rogers B and Migliuolo S 1993 Phys. Fluids B 5 2498
    [12]
    Beidler M T and Cassak P A 2011 Phys. Rev. Lett. 107 255002
    [13]
    Wilken B et al 1997 J. Geophys. Res. 102 11409
    [14]
    Ma Z W and Bhattacharjec A 1998 Geophys. Res. Lett. 25 3277
    [15]
    Kessel R L et al 1996 Geophys. Res. Lett. 23 583
    [16]
    Russell C T et al 1998 Geophys. Res. Lett. 25 3015
    [17]
    Cowley S W H 1973 Radio Sci. 8 903
    [18]
    Sonnerup B U et al 1981 J. Geophys. Res. 86 10049
    [19]
    Deng X H and Matsumoto H 2001 Nature 10 557
    [20]
    Shay M A et al 2016 Geophys. Res. Lett. 43 9
    [21]
    Phan T D et al 2000 Nature 404 848
    [22]
    Yamada M et al 2015 Phys. Plasmas 22 056501
    [23]
    Ergun R E et al 2016 Phys. Rev. Lett. 116 235102
    [24]
    Birn J et al 2001 J. Geophys. Res. 106 3715
    [25]
    Ma Z W and Bhattacharjee A 2001 J. Geophys. Res. 105 3773
    [26]
    Uzdensky D A and Kulsrud R M 2006 Phys. Plasmas 13 062305
    [27]
    Gekelman W et al 2016 Phys. Rev. Lett. 116 235101
    [28]
    Furno I et al 2003 Rev. Sci. Instrum. 74 2324
    [29]
    Frank A, Bugrov S and Markov V 2009 Phys. Lett. A 373 1460
    [30]
    XieJ L et al 2006 Plasma Sci. Technol. 8 99
    [31]
    Ono Y et al 1993 Phys. Fluids B 5 3691
    [32]
    Cothran C D et al 2003 Phys. Plasmas 10 1748
    [33]
    Yamada M et al 1997 Phys. Rev. Lett. 78 3117
    [34]
    Ji H et al 2008 Geophys. Res. Lett. 35 L13106
    [35]
    Singh N 2011 Phys. Rev. Lett. 107 245003
    [36]
    Xiao Q et al 2016 Conceptual design of dipole research eXperiment (DREX)Plasma Sci. Technol. at press
    [37]
    Chen Y et al 2013 J. Geophys. Res.: Space Physics 118 4279

Catalog

    Article views (346) PDF downloads (761) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return