Advanced Search+
Hai XIE (谢海), Rui DING (丁锐), Junling CHEN (陈俊凌), Jizhong SUN (孙继忠). Modelling of carbon erosion and re-deposition for the EAST movable limiter[J]. Plasma Science and Technology, 2017, 19(4): 45603-045603. DOI: 10.1088/2058-6272/aa4ee0
Citation: Hai XIE (谢海), Rui DING (丁锐), Junling CHEN (陈俊凌), Jizhong SUN (孙继忠). Modelling of carbon erosion and re-deposition for the EAST movable limiter[J]. Plasma Science and Technology, 2017, 19(4): 45603-045603. DOI: 10.1088/2058-6272/aa4ee0

Modelling of carbon erosion and re-deposition for the EAST movable limiter

Funds: This work has been supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003), National Natural Science Foundation of China (Nos. 11375010, 11675218 and 11005125), and the Sino-German Center for Research Promotion under Contract No. GZ769.
More Information
  • Received Date: July 20, 2016
  • The movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition. After the experiments, the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO. The geometry of the movable limiter, 3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code. In the simulations, the main uncertain parameters such as carbon concentration ρc in the background plasma and cross-field transport coefficient D⊥ in the vicinity of surface according to the ‘funneling model’, have been studied in comparison with experiments. The parameter ρc mainly influences the net erosion and deposition profiles of the two sides of the movable limiter, while D⊥ mostly changes the profiles on the top surface.
  • [1]
    Roth J et al 2009 J. Nucl. Mater. 390–391 1
    [2]
    Shimida M et al 2007 Nucl. Fusion 47 S1
    [3]
    Federici G et al 2001 Nucl. Fusion 41 1967
    [4]
    Kobayashi M et al 2007 Nucl. Fusion 47 61
    [5]
    Pitts R A et al 2011 J. Nucl. Mater. 415 S957
    [6]
    Carpentier S et al 2011 J. Nucl. Mater. 415 S165
    [7]
    Borodin D et al 2011 Phys. Scr. T145 014008
    [8]
    Matthews G F et al 1990 Plasma Phys. Control. Fusion 32 1301
    [9]
    Li Q et al 2010 Fusion Eng. Des. 85 126
    [10]
    Matthews G F et al 2007 Nucl. Fusion 31 1383
    [11]
    Arnoux G et al 2013 Nucl. Fusion 53 073016
    [12]
    Theilhaber K and Birdsall C K 1989 Phys. Fluids B 1 2260
    [13]
    Tskhakay D and Kuhn S 2003 J. Nucl. Mater. 313–316 1119
    [14]
    Stangeby P C, Pitcher C S and Elder J D 1992 Nucl. Fusion 32 2079
    [15]
    Stangeby P C 2012 Nucl. Fusion 52 083012
    [16]
    Kirschner A et al 2000 Nucl. Fusion 40 989
    [17]
    Guo H Y et al 2011 J. Nucl. Mater. 415 S369
    [18]
    Cao L and Song Y T 2011 Fusion Eng. Des. 86 1603
    [19]
    Chen J L et al 2004 Phys. Scr. T111 173
    [20]
    Qian J P et al 2009 J. Plasma Phys 75 337
    [21]
    Abramov V A et al 1989 J. Nucl. Mater. 162–164 462
    [22]
    Roth J et al 2005 J. Nucl. Mater. 337–339 970
    [23]
    Pospieszczyk A et al 1997 J. Nucl. Mater. 241–243 833
    [24]
    Brezinsek S et al 2007 J. Nucl. Mater. 363–365 1119
    [25]
    Ding R et al 2009 Plasma Phys. Control. Fusion 51 055019
    [26]
    Ding R et al 2010 Plasma Phys. Control. Fusion 52 045005

Catalog

    Article views (249) PDF downloads (702) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return