Advanced Search+
Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb
Citation: Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb

Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films

Funds: This work was supported by National Natural Science Foundation of China under grant 11375135 and International Cooperation Program of the Ministry of Science and Technology under grant 2015DFR00720.
More Information
  • Received Date: August 31, 2016
  • TiBN coatings have huge potential applications as they have excellent properties with increasing modern industrial requirements. Nanocomposite TiBN coatings were synthesized on cemented carbide, high speed steel and Si substrates by using cathodic arc plasma ion plating from pure TiB2 ceramic targets. The structure and mechanical properties of the TiBN coatings were significantly influenced by the nitrogen partial pressure. Rutherford backscattering spectrometry demonstrates that the nitrogen content of the coating varied from 2.8% to 34.5% and high-resolution electron microscopy images reveal that all coatings have the characteristic of nanocrystals embedded in an amorphous matrix. The root-mean-square roughness of the coatings increases from 3.73 to 14.64 nm and the coefficients of friction of the coatings at room temperature vary from 0.54 to 0.73 with increasing nitrogen partial pressure. The microhardness of the coating increases up to 35.7 GPa at 10 sccm N2 flow rate. The smallest wear rate is 2.65×10−15m3N–1m–1 which indicates that TiBN coatings have excellent wear resistance. The adhesion test revealed that the TiBN coatings have good adhesion at low nitrogen partial pressure.
  • [1]
    Bousser E, Martinu L and Klemberg-Sapieha J E 2014 Surf. Coat. Technol. 257 165–81
    [2]
    Gong F and Guo B 2013 Surf. Coat. Technol. 232 814–20
    [3]
    Voevodin A A, Muratore C and Aouad S M 2014 Surf. Coat. Technol. 257 247–65
    [4]
    Xiao L S et al 2007 Appl. Surf. Sci. 253 7535–9
    [5]
    Polcar T, Parreira N M G and Novák R 2007 Surf. Coat. Technol. 201 5228–35
    [6]
    Liscano S et al 2006 Surf. Coat. Technol. 201 4419–23
    [7]
    Li T P et al 2008 Surf. Coat. Technol. 202 1985–93
    [8]
    Lee J H, Tsai P C and Lee J W 2009 Thin Solid Films 517 5044–9
    [9]
    Ahmed M S et al 2011 J. Am. Ceramic Soc. 94 1546–51
    [10]
    Cheng Y H et al 2010 Surf. Coat. Technol. 204 2123–9
    [11]
    Bull S J, Bhat D G and Staia M H 2003 Surf. Coat. Technol. 163–164 507–14
    [12]
    Polcar T, Novák R and ?iroky P 2006 Wear 260 40–9
    [13]
    Stoiber M et al 2003 J. Vac. Sci. Technol. B 21 1084–91
    [14]
    Brenning N et al 2012 Plasma Sources Sci. Technol. 21 1257–61
    [15]
    Rebholz C et al 1999 Surf. Coat. Technol. 116–119 648–53
    [16]
    Mayrhofer P H, Clemens H and Mitterer C 2005 Z. Metallkd. 96 468–80
    [17]
    Patscheider J, Zehnder T and Diserens M 2001 Surf. Coat. Technol. 146–147 201–8
    [18]
    Cicek H et al 2014 J. Adhes. Sci. Technol. 28 1140–8
    [19]
    Lin B Z et al 2015 Plasma Sci. Technol. 17 221–7
    [20]
    Mayrhofer P H, Stoiber M and Mitterer C 2005 Scr. Mater. 53 241–5
    [21]
    Lu Y H et al 2007 Surf. Coat. Technol. 201 7368–74
    [22]
    Karvankova P et al 2006 Surf. Coat. Technol. 200 2978–89
    [23]
    Wang Z S et al 2012 Plasma Sci. Technol. 14 819–23
    [24]
    Chu W K 1978 Backscattering Spectrometry (New York: Academic) p 356
    [25]
    Karydas A G et al 2015 Appl. Surf. Sci. 356 631–8
    [26]
    Ismail I M et al 2012 Nucl. Instrum. Methods B 271 102–6
    [27]
    Wang C L et al 2009 Chin. Phys. B 18 1248–52
    [28]
    Mayer M 1999 AIP Conf. Proc. 475 541–4
    [29]
    Gerth J and Wiklund U 2008 Wear 264 885–92
    [30]
    Neidhardt J et al 2006 Acta Mater. 54 4193–200
    [31]
    Chu K and Shen Y G 2008 Wear 265 516–24
    [32]
    Aouadi S M et al 2002 Surf. Coat. Technol. 160 145–51
    [33]
    Alexander L and Klug H P 1950 J. Appl. Phys. 21 137–42
    [34]
    Huang Z H et al 2015 Nucl. Sci. Technol. 26 23–8
    [35]
    Nowotny H et al 1961 Monatsh. Chem. 92 403–14
    [36]
    Musil J and Jirout M 2007 Surf. Coat. Technol. 201 5148–52
    [37]
    Lu Y H et al 2007 Wear 262 1372–9
    [38]
    Neidhardt J et al 2010 Int. J. Refract. Met. Hard Mater. 28 23–31
    [39]
    Mollart T P et al 1996 Surf. Coat. Technol. 86–87 231–6
    [40]
    García-Gonzalezá L et al 2007 J. Mater. Process. Tech. 186 362–6
    [41]
    Verein Deutscher Ingenieure Normen 1991 VDI-3198 (Dusseldorf: VDI-Verlag)
    [42]
    Vidakis N, Antoniadis A and Bilalis N 2003 J. Mater. Process. Tech. 143–144 481–5

Catalog

    Article views (279) PDF downloads (735) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return