Advanced Search+
Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Kun LU (陆坤), Zhongwei WANG (王忠伟), Jianfeng ZHANG (张剑峰), Yongfa QIN (秦永法). Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder[J]. Plasma Science and Technology, 2017, 19(4): 45601-045601. DOI: 10.1088/2058-6272/aa57ec
Citation: Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Kun LU (陆坤), Zhongwei WANG (王忠伟), Jianfeng ZHANG (张剑峰), Yongfa QIN (秦永法). Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder[J]. Plasma Science and Technology, 2017, 19(4): 45601-045601. DOI: 10.1088/2058-6272/aa57ec

Thermal analysis of the cryostat feed through for the ITER Tokamak TF feeder

Funds: This work is supported by the Province Postdoctoral Foundation of Jiangsu (1501164B), the Technical Innovation Nurturing Foundation of Yangzhou University (2015CXJ016) and China Postdoctoral Science Foundation (2016M600447).
More Information
  • Received Date: May 29, 2016
  • In Tokamaks, the toroidal field (TF) coil feeder is an important component that is used to supply the cryogens and electrical power for the TF coils. As a part of the TF feeder, the cryostat-feed through (CFT) is subject to low temperatures of 9 and 80 K inside and room temperature of 300 K outside. Based on the features of the International Thermonuclear Experimental Reactor TF feeder, the thermal performance of the CFT under the nominal conditions is studied. Taking into account the conductive, convective and radiation heat transfer, the finite element model of the CFT is built. Transient thermal analysis is performed to determine the temperatures of the CFT on the 9th day of cooldown. The model is assessed by comparing the cooling curves of the CFT after 9 days. If the simulation and experimental results are the same, the finite element model can be considered as calibrated. The model predicts that the cooling time will be approximately 26 days and the temperature distribution and heat load of the main components are obtained when the CFT reaches thermal equilibrium. This study provides a valid quantitative characterization of the CFT design.
  • [1]
    Wu Y 2010 Appl. Supercond. 20 431
    [2]
    Wei J et al 2010 Appl. Supercond. 20 556
    [3]
    Song Y T et al 2014 IEEE Trans. Plasma Sci. 42 503
    [4]
    Sborchia C et al 2014 Nucl. Fusion 54 013006
    [5]
    Mitchell N et al 2008 Appl. Supercond. 18 435
    [6]
    Zheng J et al 2013 Fusion Eng. Des. 88 2960
    [7]
    Bauer P, Sahu A K and Sato N 2009 ITER_D_2EH9YM
    [8]
    Song Y et al 2010 Appl. Supercond. 20 1710
    [9]
    Niu E et al 2013 IEEE Symp. on Fusion Engineering (San Francisco)
    [10]
    Bauer P et al 2012 Appl. Supercond. 22 4800504
    [11]
    Song Y et al 2012 Appl. Supercond. 22 4800404
    [12]
    Wang Z et al 2011 At. Energy Sci. Technol. 45 436 (in Chinese)
    [13]
    Sahu A K et al 2012 Appl. Supercond. 22 4800604
    [14]
    Zhu Y et al 2013 Plasma Sci. Technol. 15 599
    [15]
    Zhang S et al 2014 Plasma Sci. Technol. 16 978
    [16]
    Wang Z and Song Y 2015 J. Fusion Energy 34 817
    [17]
    Ji X et al 2011 Cryog. Supercond. 39 1 (in Chinese)
    [18]
    Zhang S et al 2011 Mach. Des. Manuf. 2011 194 (in Chinese)
  • Related Articles

    [1]Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326
    [2]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [3]Zhijun WANG (王智君), Xiang GAO (高翔), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Fan ZHOU (周凡), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), EAST Team. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(2): 25103-025103. DOI: 10.1088/2058-6272/aa9477
    [4]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [5]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [6]PAN Xiayun (潘夏云), WANG Fudi (王福地), ZHANG Xinjun (张新军), LYU Bo (吕波), CHEN Jun (陈俊), LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), YU Yi (余羿), YE Minyou (叶民友), WAN Baonian (万宝年). Observation of Central Toroidal Rotation Induced by ICRF on EAST[J]. Plasma Science and Technology, 2016, 18(2): 114-119. DOI: 10.1088/1009-0630/18/2/03
    [7]PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), DU Tengfei (杜腾飞), HU Zhimeng (胡志猛), GE Lijian (葛理健), CHEN Jinxiang (陈金象), LI Xiangqing (李湘庆), FAN Tieshuan (樊铁栓). Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(1): 23-29. DOI: 10.1088/1009-0630/18/1/05
    [8]FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03
    [9]XU Ming, XU Xiaoyuan, WEN Yizhi, MA Jinxiu, XIE Jinlin, GAO Bingxi, LAN Tao, LIU Adi, YU Yi, HE Yinghua, WAN Baonian, HU Liqun, GAO Xiang. Electron Cyclotron Emission Imaging on the EAST Tokamak[J]. Plasma Science and Technology, 2011, 13(2): 167-171.
    [10]LUO Zhengping, XIAO Bingjia, J. A. LEUER, M. L. WALKER, YUAN Qiping. Eddy Calculation and Vacuum Field Reconstruction on EAST[J]. Plasma Science and Technology, 2011, 13(2): 145-152.
  • Cited by

    Periodical cited type(7)

    1. Li, Z., Ye, Y., Kong, D. et al. Detecting and tracking high-velocity plasmoids produced by a magnetized coaxial plasma gun in visible images. Review of Scientific Instruments, 2024, 95(12): 123506. DOI:10.1063/5.0230459
    2. Shen, Y.-C., Niu, Y.-F., Kong, D.-F. et al. Development and Performance Test of a Seya-Namioka Vacuum Ultraviolet Spectroscopy System | [Seya-Namioka 类型真空紫外光谱系统的研制和性能测试]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(8): 2158-2165. DOI:10.3964/j.issn.1000-0593(2024)08-2158-08
    3. Tan, M., Ye, Y., Kong, D. et al. Design and operation of a repetitive compact torus injector for the EAST tokamak. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114559
    4. Shen, Y., Niu, Y., Kong, D. et al. Vacuum-Ultraviolet spectrometer system for impurity emission measurement on a Compact Torus Injection System of EAST. Journal of Instrumentation, 2024, 19(5): P05075. DOI:10.1088/1748-0221/19/05/P05075
    5. Meng, F.-W., Zhang, X.-H., Hu, G.-H. et al. Development of a lanthanum hexaboride plasma source in EAST-CTI test platform | [EAST-CTI 测试平台上六硼化镧等离子体源的研制]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(1): 24-29. DOI:10.16568/j.0254-6086.202401005
    6. Liu, S., Xu, T., Liu, K.-Q. et al. Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure | [静态气压下平行轨道加速器电流分布与等离子体速度特性]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(19): 195202. DOI:10.7498/aps.72.20231007
    7. Wang, D., Qin, J., Zhang, Z. et al. Design and simulation of 1.5 T conduction-cooled superconducting magnet with flip-over capability. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113845
    1. Li, Z., Ye, Y., Kong, D. et al. Detecting and tracking high-velocity plasmoids produced by a magnetized coaxial plasma gun in visible images. Review of Scientific Instruments, 2024, 95(12): 123506. DOI:10.1063/5.0230459
    2. Shen, Y.-C., Niu, Y.-F., Kong, D.-F. et al. Development and Performance Test of a Seya-Namioka Vacuum Ultraviolet Spectroscopy System | [Seya-Namioka 类型真空紫外光谱系统的研制和性能测试]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(8): 2158-2165. DOI:10.3964/j.issn.1000-0593(2024)08-2158-08
    3. Tan, M., Ye, Y., Kong, D. et al. Design and operation of a repetitive compact torus injector for the EAST tokamak. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114559
    4. Shen, Y., Niu, Y., Kong, D. et al. Vacuum-Ultraviolet spectrometer system for impurity emission measurement on a Compact Torus Injection System of EAST. Journal of Instrumentation, 2024, 19(5): P05075. DOI:10.1088/1748-0221/19/05/P05075
    5. Meng, F.-W., Zhang, X.-H., Hu, G.-H. et al. Development of a lanthanum hexaboride plasma source in EAST-CTI test platform | [EAST-CTI 测试平台上六硼化镧等离子体源的研制]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(1): 24-29. DOI:10.16568/j.0254-6086.202401005
    6. Liu, S., Xu, T., Liu, K.-Q. et al. Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure | [静态气压下平行轨道加速器电流分布与等离子体速度特性]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(19): 195202. DOI:10.7498/aps.72.20231007
    7. Wang, D., Qin, J., Zhang, Z. et al. Design and simulation of 1.5 T conduction-cooled superconducting magnet with flip-over capability. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113845

    Other cited types(0)

Catalog

    Article views (254) PDF downloads (792) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return