Advanced Search+
Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
Citation: Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3

Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current

Funds: This work is supported by National Natural Science Foundation of China (51576174).
More Information
  • Received Date: November 07, 2016
  • The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc ( RGA ) plasma codriven by a magnetic field and tangential flow were investigated. The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge, particularly at flow rate=2 l min-1 . When the current was lower than 140 mA, sinusoidal waveforms with regular variation periods of 13.5–17.0 ms can be observed ( flow rate = 2 l min-1 ). The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions. Increasing the flow rate from 8 to 12l min-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120 – 200 V). For a given flow rate, the reduction of current resulted in a nearly linear increase of voltage.
  • [1]
    Kalra C S et al 2005 Rev. Sci. Instrum. 76 025110
    [2]
    Fridman A et al 1999 Prog. Energy Combust. Sci. 25 211
    [3]
    Tu X et al 2007 J. Phys. D: Appl. Phys. 40 3972
    [4]
    Tu X et al 2010 IEEE Trans. Plasma Sci. 38 3319
    [5]
    Zhang H et al 2014 Int. J. Hydrogen Energ. 39 12620
    [6]
    LiuSY et al 2014 J. Phys. Chem. C 118 10686
    [7]
    Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011
    [8]
    Kalra C S, Gutsol A F and Fridman A A 2005 IEEE Trans. Plasma Sci. 33 32
    [9]
    Tu X and Whitehead J C 2014 Int. J. Hydrogen Energ. 39 9658
    [10]
    Du C M et al 2014 IEEE Trans. Plasma Sci. 42 2221
    [11]
    Mitsugi F et al 2014 IEEE Trans. Plasma Sci. 42 3681
    [12]
    Bublievsky A F et al 2015 IEEE Trans. Plasma Sci. 43 1742
    [13]
    Gutsol A, Rabinovich A and Fridman A 2011 J. Phys. D: Appl. Phys. 44 274001
    [14]
    Li X D et al 2013 IEEE Trans. Plasma Sci. 41 126
    [15]
    Zhang H et al 2016 RSC Adv. 6 12770
    [16]
    Zhang H et al 2015 Int. J. Hydrogen Energ. 40 15901
    [17]
    Zhang H et al 2016 Plasma Chem. Plasma Process. 36 813
    [18]
    Wang W Z and Bogaerts A 2016 Plasma Sources Sci. Technol. 25 055025
    [19]
    Wang W Z et al 2016 Plasma Sources Sci. Technol. 25 065012
    [20]
    Ombrello T, Ju Y and Fridman A 2008 AIAA J. 46 2424
    [21]
    Kusano Y et al 2013 J. Phys. D: Appl. Phys. 46 135203
    [22]
    Cooper M et al 2008 Sterilization and complete removal of bacteria using atmospheric pressure plasmas Proc. of the 35th IEEE Int. Conf. on Plasma Science (Karlsruhe, Germany) (https://doi.org/10.1109/ PLASMA.2008.4591007)
    [23]
    Yu L et al 2010 J. Hazard. Mater. 180 449
    [24]
    Zhu F S et al 2016 Fuel 176 78
    [25]
    Ni M J et al 2015 Plasma Sci. Technol. 17 209
    [26]
    Zhang H et al 2012 IEEE Trans. Plasma Sci. 40 3493
    [27]
    Zhang H et al 2016 Plasma Sci. Technol. 18 473
    [28]
    Mutaf-Yardimci O et al 1999 Ann. NY Acad. Sci. 891 304
    [29]
    Lee D H et al 2007 Proc. Combust. Inst. 31 3343
    [30]
    Korolev Y D et al 2011 IEEE Trans. Plasma Sci. 39 3319
    [31]
    Korolev Y D et al 2014 Plasma Sources Sci. Technol. 23 054016
    [32]
    Korolev Y D et al 2014 IEEE Trans. Plasma Sci. 42 1615
    [33]
    Dorier J L et al 2001 IEEE Trans. Plasma Sci. 29 494
    [34]
    Duan Z and Heberlein J 2002 J. Therm. Spray Technol. 11 44
    [35]
    Tu X et al 2009 Phys. Plasmas 16 113506
    [36]
    Tu X et al 2008 Phys. Plasmas 15 053504
    [37]
    Eckert E R G, Pfender E and Wutzke S A 1967 AIAA J. 5 707
    [38]
    Tu X, Gallon H J and Whitehead J C 2011 IEEE Trans. Plasma Sci. 39 2900
    [39]
    Tu X et al 2007 Plasma Sources Sci. Technol. 16 803
    [40]
    Kaminska A and Dudeck M A 1998 High Temp. Mater. Process. (NY) 2 117
    [41]
    Staack D et al 2005 Plasma Sources Sci. Technol. 14 700
    [42]
    Ma J et al 2015 Chin. Phys. B 24 065205
    [43]
    Staack D et al 2006 Plasma Sources Sci. Technol. 15 818
    [44]
    Wu W W et al 2015 IEEE Trans. Plasma Sci. 43 3979
    [45]
    LeeD H et al 2010 Int. J. Hydrogen Energ. 35 4668
    [46]
    Lee D H et al 2010 Int. J. Hydrogen Energ. 35 10967
    [47]
    Zhu J J et al 2015 Appl. Phys. Lett. 106 044101
    [48]
    Zhu J J et al 2014 Appl. Phys. Lett. 105 234102
    [49]
    Zhang C et al 2012 IEEE Trans. Plasma Sci. 40 2843

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return