Advanced Search+
Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
Citation: Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db

Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency

Funds: This work is supported by National Natural Science Foundation of China (No. 40831062).
More Information
  • Received Date: May 30, 2016
  • The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at Tromsø site of European Incoherent Scatter Scientific Association, Norway, is analyzed. When pump is operating slightly above the fifth electron gyrofrequency, some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude, which may be due to the focusing or collimating of radar wave by irregularities. While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density, but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability. In addition, the different heating rates and cooling rates at the pump frequencies below, around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.
  • [1]
    Gordon W E, Showen R and Carlson H C Jr 1971 J. Geophys. Res. 76 7808
    [2]
    Gordon W E and Carlson H C Jr 1974 Radio Sci. 9 1041
    [3]
    Newman A L et al 1988 Geophys. Res. Lett. 15 311
    [4]
    Duncan L M, Sheerin J P and Behnke R A 1988 Phys. Rev. Lett. 61 239
    [5]
    Stocker A J et al 1992 J. Atmos. Terr. Phys. 54 1555
    [6]
    Utlaut W F and Violette E J 1974 Radio Sci. 9 895
    [7]
    Mantas G P, Carlson H C Jr and LaHoz C H 1981 J. Geophys. Res. 86 561
    [8]
    Robinson T R et al 1996 J. Atmos. Terr. Phys. 58 385
    [9]
    Gurevich A V, Lukyanov A V and Zybin K P 1995 Phys. Lett. A 206 247
    [10]
    Gurevich A V, Lukyanov A V and Zybin K P 1996 Phys. Lett. A 211 363
    [11]
    Gurevich A V et al 1999 Phys. Lett. A 251 311
    [12]
    Mj?lhus E 1993 J. Atmos. Terr. Phys. 55 907
    [13]
    Honary F et al 1995 J. Geophys. Res. 100 21489
    [14]
    Ponomarenko P V, Leyser T B and Thidé B 1999 J. Geophys. Res. 104 10081
    [15]
    Borisova T D et al 2014 Radiophys. Quantum Electron. 57 1
    [16]
    Borisova T D et al 2016 Radiophys. Quantum Electron. 58 561
    [17]
    Wu J, Wu J and Xu Z W 2016 Plasma Sci. Technol. 18 890
    [18]
    Rietveld M T et al 1993 J. Atmos. Terr. Phys. 55 577
    [19]
    Rishbeth H and van Eyken A P 1993 J. Atmos. Terr. Phys. 55 525
    [20]
    Stubbe P, Kohl H and Rietveld M T 1992 J. Geophys. Res. 97 6285
    [21]
    Kohl H et al 1993 J. Atmos. Terr. Phys. 55 601
    [22]
    DuBois D F, Rose H A and Russell D 1988 Phys. Rev. Lett. 61 2209
    [23]
    DuBois D F, Rose H A and Russell D 1990 J. Geophys. Res. 95 21221
    [24]
    DuBois D F, Rose H A and Russell D 1991 Phys. Rev. Lett. 66 1970
    [25]
    Robinson T R 1989 Phys. Rep. 179 79
    [26]
    Bryers C J et al 2013 J. Geophys. Res. Space Phys. 118 7472
    [27]
    Stubbe P et al 1984 J. Geophys. Res. Space Phys. 89 7523
    [28]
    Rietveld M T and Senior A 2015 Do ionospheric irregularities focus UHF radar waves? 17th Int. EISCAT Symp. (Hermanus, RSA, 14–18 September)
    [29]
    Dysthe K B et al 1982 Phys. Scr. 1982 548
    [30]
    Mj?lhus E 1990 Radio Sci. 25 1321
    [31]
    Rietveld M T et al 2003 J. Geophys. Res. 108 1141
    [32]
    Gurevich A V 2007 Phys.—Usp. 50 1091
  • Related Articles

    [1]Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
    [2]Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
    [3]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [4]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [5]WU Jun (吴军), WU Jian (吴健), XU Zhengwen (许正文). Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere[J]. Plasma Science and Technology, 2016, 18(9): 890-896. DOI: 10.1088/1009-0630/18/9/03
    [6]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [7]QIAN Jinping (钱金平), GONG Xianzu (龚先祖), WAN Baonian (万宝年), LIU Fukun (刘甫坤), WANG Mao (王茂), XU Handong (徐旵东), HU Chundong (胡纯栋), WANG Liang (王亮), LI Erzhong (李二众), ZENG Long (曾龙), TI Ang (提昂), SHEN Biao (沈飚), LIN Shiyao (林士耀), SHAO Linming (邵林明), ZANG Qing (臧庆), LIU Haiqing (刘海庆), ZHANG Bin (张斌), SUN Youwen (孙有文), XU Guosheng (徐国盛), LIANG Yunfeng (梁云峰), XIAO Bingjia (肖炳甲), HU Liqun (胡立群), LI Jiangang (李建刚), the EAST Team. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST[J]. Plasma Science and Technology, 2016, 18(5): 457-459. DOI: 10.1088/1009-0630/18/5/01
    [8]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [9]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
    [10]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09

Catalog

    Article views (230) PDF downloads (714) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return