Advanced Search+
Shuangyan XU (徐双艳), Jinsheng CAI (蔡晋生), Yongsheng LIAN (练永生). Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures[J]. Plasma Science and Technology, 2017, 19(9): 95504-095504. DOI: 10.1088/2058-6272/aa6f59
Citation: Shuangyan XU (徐双艳), Jinsheng CAI (蔡晋生), Yongsheng LIAN (练永生). Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures[J]. Plasma Science and Technology, 2017, 19(9): 95504-095504. DOI: 10.1088/2058-6272/aa6f59

Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures

Funds: This work were supported by National Natural Science Foundation of China (11472221), and were also funded by the 111 project of China.
More Information
  • Received Date: December 28, 2016
  • Nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures were investigated numerically by using a newly proposed plasma kinetic model. The governing equations include the coupled continuity plasma discharge equation, drift-diffusion equation, electron energy equation, Poisson’s equation, and the Navier–Stokes equations. Powered electrodes of three different exposures were simulated to understand the effect of surface exposure on plasma discharge and surrounding flow field. Our study showed that the fully exposed powered electrode resulted in earlier reduced electric field breakdown and more intensive discharge characteristics than partially exposed and rounded-exposed ones. Our study also showed that the reduced electric field and heat release concentrated near the right upper tip of the powered electrode. The fully exposed electrode also led to stronger shock wave, higher heating temperature, and larger heated area.
  • [1]
    Murray R C et al 2006 AIAA J. 44 119
    [2]
    Adamovich I V et al 2008 J. Propul. Power 24 1198
    [3]
    Pancheshnyi S V et al 2006 IEEE Trans. Plasma Sci. 34 2478
    [4]
    Sun W T et al 2012 Combust. Flame 159 221
    [5]
    Little J et al 2012 AIAA J. 50 350
    [6]
    Roupassov D V et al 2009 AIAA J. 47 168
    [7]
    Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
    [8]
    Benard N et al 2016 Exp. Fluids 57 22
    [9]
    Sato M et al 2015 Phys. Fluids 27 117101
    [10]
    Sujar-Garrido P et al 2015 Exp. Fluids 56 70
    [11]
    Roy S and Wang C C 2009 J. Phys. D: Appl. Phys. 42 032004
    [12]
    Liu Z F, Wang L Z and Fu S 2011 Sci. China Phys. Mech. Astron. 54 2033
    [13]
    Hoskinson A R and Hershkowitz N 2010 J. Phys. D: Appl. Phys. 43 065205
    [14]
    Durscher R J and Roy S 2012 J. Phys. D: Appl. Phys. 45 035202
    [15]
    Joussot R et al 2013 J. Phys. D: Appl. Phys. 46 125204
    [16]
    Thomas F O et al 2009 AIAA J. 47 2169
    [17]
    Enloe C L et al 2004 AIAA J. 42 595
    [18]
    Abe T et al 2008 AIAA J. 46 2248
    [19]
    Correale G, Winkel R and Kotsonis M 2015 J. Appl. Phys. 118 083301
    [20]
    Dawson R and Little J 2013 J. Appl. Phys. 113 103302
    [21]
    Ndong A C A et al 2013 J. Electrostat. 71 246
    [22]
    Takashima K et al 2011 Plasma Sources Sci. Technol. 20 055009
    [23]
    Dawson R A and Little J 2014 J. Appl. Phys. 115 043306
    [24]
    Jiang H et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1101
    [25]
    Jiang H, T S Tao, Zhang C, Yan P, Niu Z and Zhou Y 2013 2013 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena (https://doi.org/10.1109/ CEIDP.2013.6747419)
    [26]
    Xu S Y, Cai J S and Li J 2016 Phys. Plasmas 23 103510
    [27]
    Bak M S and Cappelli M A 2013 J. Appl. Phys. 113 113301
    [28]
    Zhu Y F et al 2013 J. Phys. D: Appl. Phys. 46 355205
    [29]
    Deconinck T, Mahadevan S and Raja L L 2007 IEEE Trans. Plasma Sci. 35 1301
    [30]
    Mahadevan S and Raja L L 2010 J. Appl. Phys. 107 093304
    [31]
    Nelson D et al 2003 J. Appl. Phys. 94 96
    [32]
    Viehland L A and Mason E A 1995 At. Data Nucl. Data Tables 60 37
    [33]
    Chawla B R and Gummel H K 1970 IEEE Trans. Electron. Dev. 17 915
    [34]
    Poggie J et al 2013 Plasma Sources Sci. Technol. 22 015001
  • Related Articles

    [1]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [2]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [3]Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
    [4]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [5]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [8]DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
    [9]ZHENG Borui (郑博睿), GAO Chao (高超), LI Yibin (李一滨), LIU Feng (刘锋), LUO Shijun (罗时钧). Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation[J]. Plasma Science and Technology, 2013, 15(4): 350-356. DOI: 10.1088/1009-0630/15/4/08
    [10]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11

Catalog

    Article views (277) PDF downloads (546) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return