Advanced Search+
Mook Tzeng LIM (林木森), Ahmad Zulazlan SHAH ZULKIFLI, Kanesh Kumar JAYAPALAN, Oihoong CHIN. Development of a dimensionless parameter for characterization of dielectric barrier discharge devices with respect to geometrical features[J]. Plasma Science and Technology, 2017, 19(9): 95402-095402. DOI: 10.1088/2058-6272/aa7382
Citation: Mook Tzeng LIM (林木森), Ahmad Zulazlan SHAH ZULKIFLI, Kanesh Kumar JAYAPALAN, Oihoong CHIN. Development of a dimensionless parameter for characterization of dielectric barrier discharge devices with respect to geometrical features[J]. Plasma Science and Technology, 2017, 19(9): 95402-095402. DOI: 10.1088/2058-6272/aa7382

Development of a dimensionless parameter for characterization of dielectric barrier discharge devices with respect to geometrical features

Funds: The authors would like to thank Tenaga Nasional Berhad (Malaysia) for funding of this research (TNBR/SF195/2015 and TNBR/SF240/2016)
More Information
  • Received Date: January 16, 2017
  • Non-thermal plasma (NTP) devices produce excited and radical species that have higher energy levels than their ground state and are utilized for various applications. There are various types of NTP devices, with dielectric barrier discharge (DBD) reactors being widely used. These DBD devices vary in geometrical configuration and operating parameters, making a comparison of their performance in terms of discharge power characteristics difficult. Therefore, this study proposes a dimensionless parameter that is related to the geometrical features, and is a function of the discharge power with respect to the frequency, voltage, and capacitance of a DBD. The dimensionless parameter, in the form of a ratio of the discharge energy per cycle to the gap capacitive energy, will be useful for engineers and designers to compare the energy characteristics of devices systematically, and could also be used for scaling up DBD devices. From the results in this experiment and from the literature, different DBD devices are categorized into three separate groups according to different levels of the energy ratio. The larger DBD devices have lower energy ratios due to their lower estimated surface discharge areas and capacitive reactance. Therefore, the devices can be categorized according to the energy ratio due to the effects of the geometrical features of the DBD devices, since it affects the surface discharge area and capacitance of the DBD. The DBD devices are also categorized into three separate groups using the Kriegseis factor, but the categorization is different from that of the energy ratio.
  • [1]
    Sj?berg M et al 2003 J. Electrostat. 59 87
    [2]
    Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
    [3]
    Ombrello T et al 2010 Combust. Flame 157 1906
    [4]
    Ombrello T et al 2010 Combust. Flame 157 1916
    [5]
    Hu H B et al 2013 J. Therm. Sci. 22 275
    [6]
    Du C M et al 2015 Int. J. Hydrogen Energy 40 12634
    [7]
    Wascher R et al 2014 Surf. Coat. Technol. 259 62
    [8]
    Vaswani S, Koskinen J and Hess D W 2005 Surf. Coat. Technol. 195 121
    [9]
    Podgorski L et al 2000 Int. J. Adhes. Adhes. 20 103
    [10]
    Han Y et al 2011 Carbohydr. Polym. 86 1031
    [11]
    Ye D et al 2005 J. Hazard. Mater. 127 149
    [12]
    Wang P et al 2015 Appl. Therm. Eng. 91 1
    [13]
    Talebizadeh P et al 2014 Renew. Sustain. Energy Rev. 40 886
    [14]
    Babaie M et al 2015 Chem. Eng. J. 276 240
    [15]
    Wang X Y, Zhou M H and Jin X H 2012 Electrochim. Acta 83 501
    [16]
    WangN,ChenDZandZouL S2015 Appl. Therm. Eng. 75 779
    [17]
    Tichonovas M et al 2013 Chem. Eng. J. 229 9
    [18]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [19]
    Petitpas G et al 2007 Int. J. Hydrogen Energy 32 2848
    [20]
    Nozaki T and Okazaki K 2013 Catal. Today 211 29
    [21]
    Stepanyan S A, Soloviev V R and Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 485201
    [22]
    Nunnally T et al 2014 Int. J. Hydrogen Energy 39 11976
    [23]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028
    [24]
    Liu S H and Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632
    [25]
    Lu X P and Laroussi M 2005 J. Appl. Phys. 98 023301
    [26]
    Liu S H and Neiger M 2003 J. Phys. D: Appl. Phys. 36 3144
    [27]
    Fang Z et al 2009 J. Phys. D: Appl. Phys. 42 085203
    [28]
    Kühn S et al 2010 Plasma Sources Sci. Technol. 19 015013
    [29]
    Rajasekaran P 2011 Atmospheric-pressure Dielectric barrier discharge (DBD) in air: plasma characterization for skin therapy PhD Thesis Institute for Electrical Engineering and Plasma Technology, Ruhr-Universit?t Bochum
    [30]
    Rajasekaran P, Bibinov N and Awakowicz P 2012 Meas. Sci. Technol. 23 085605
    [31]
    Rajasekaran P et al 2009 J. Phys. D: Appl. Phys. 42 225201
    [32]
    Tendero C et al 2006 Spectrochim. Acta Part B 61 2
    [33]
    Glicksman L R, Hyre M and Woloshun K 1993 Powder Technol. 77 177
    [34]
    Horio M et al 1989 J. Chem. Eng. Jpn. 22 587
    [35]
    Kehlenbeck R et al 2001 AIChE J. 47 582
    [36]
    Kriegseis J et al 2011 J. Electrostat. 69 302
    [37]
    Zulazlan A et al 2016 J. Telecommunic. Electron. Comput. Eng. 8 63
    [38]
    Fang Z et al 2008 J. Electrostat. 66 421
    [39]
    Xia L Y et al 2008 J. Hazard. Mater. 152 113
    [40]
    Wang T and Sun B M 2016 Fuel Process. Technol. 144 109
  • Related Articles

    [1]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [4]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [5]Zhiwei XIA (夏志伟), Wei LI (李伟), BoLI (李波), Qingwei YANG (杨青巍). Geometrical aspects of cylindric magnetic shields in strong static fields[J]. Plasma Science and Technology, 2017, 19(11): 115603. DOI: 10.1088/2058-6272/aa8031
    [6]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [7]MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17
    [8]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.

Catalog

    Article views (286) PDF downloads (475) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return