Advanced Search+
A BOUCHIKHI. Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities[J]. Plasma Science and Technology, 2017, 19(9): 95403-095403. DOI: 10.1088/2058-6272/aa74ad
Citation: A BOUCHIKHI. Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities[J]. Plasma Science and Technology, 2017, 19(9): 95403-095403. DOI: 10.1088/2058-6272/aa74ad

Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities

More Information
  • Received Date: March 14, 2017
  • The physical properties of Ne–Xe DC glow discharges at low pressure are reported for a gap length of 1 cm for the first time in the literature. The model deals specifically with the first three moments of Boltzmann’s equation and includes the radiation processes and metastable atom densities. The spatio-temporal distributions of the electron and neon and xenon ion densities, the neon and xenon metastable atom densities, the electric potential and the electric field as well as the mean electron energy are presented at 1.5 Torr and 250 V. The current–voltage characteristic is shown at 3 Torr, and it is compared with previous work for pure neon gas. The model is validated theoretically and experimentally in the case of pure gas.
  • [1]
    Rafatov I R, Akbar D and Bilikmen S 2007 Phys. Lett. A 367 114
    [2]
    Stankov M N et al 2015 Chin. Phys. Lett. 32 025101
    [3]
    Kudryavtsev A A, Morin A V and Tsendin L D 2008 Tech. Phys. 53 1029
    [4]
    Ono S, Kato H and Tell S 1998 Combust. Sci. Tech. 133 151
    [5]
    Khomich V A et al 2010 Tech. Phys. Lett. 36 918
    [6]
    Ponduri S et al 2016 J. Appl. Phys. 119 093301
    [7]
    Baadj S, Harrache Z and Belasri A 2013 Plasma Phys. Rep. 39 1043
    [8]
    Li Q et al 2010 J. Appl. Phys. 107 043304
    [9]
    Sobel A 1991 IEEE Trans. Plasma Sci. 19 1032
    [10]
    Michel J P 1989 Large area discharge displays or plasma displays Display Engineering ed D Bosman (Amsterdam: North Holland) p 185
    [11]
    Weber L F 1985 Plasma displays ed L E Tannas Jr Flat-Panel Displays and CRT’s (New York: Van Nostrand Reinhold) p 322
    [12]
    Jackson R N and Johnson K E 1975 Advances in Electronics and Electron Devices (New York: Academic)
    [13]
    Alili T, Bouchikhi A and Rizouga M 2016 Can. J. Phys. 94 731
    [14]
    Becker M M, Loffhagen D and Schmidt W 2009 Comput. Phys. Commun. 180 1230
    [15]
    Stefanovic?I and Petrovic?Z L 1997 Jpn. J. Appl. Phys. Part 1 36 4728
    [16]
    Rózsa K, Gallagher A and Donkó Z 1995 Phys. Rev. E 52 913
    [17]
    Petrovic?Z, Jelenkovic?B and Phelps A 1994 Private communication
    [18]
    Jelenkovic?B M, Rózsa K and Phelps A V 1993 Phys. Rev. E 47 2816
    [19]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [20]
    LXCat https://nl.lxcat.net/solvers/BolsigPlus/
    [21]
    Sigeneger F and Winkler R 1999 IEEE Trans. Plasma Sci. 27 1254
    [22]
    Van Gaens W and Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 079502
    [23]
    Sheverev V A, Stepaniuk V P and Lister G G 2002 J. Appl. Phys. 92 3454
    [24]
    Kolokolov N B, Kudrjavtsev A A and Blagoev A B 1994 Phys. Scr. 50 371
    [25]
    Rafatov I, Bogdanov E A and Kudryavtsev A A 2012 Phys. Plasmas 19 093503
    [26]
    Pike E W 1936 Phys. Rev. 49 513
    [27]
    Meunier J, Belenguer P and Boeuf J P 1995 J. Appl. Phys. 78 731
    [28]
    Levin L A et al 1981 IEEE J. Quantum Electron. 17 2282
    [29]
    Vriens L and Smeets A H M 1980 Phys. Rev. A 22 940
    [30]
    Ricard A 1969 J. Phys. 30 556
    [31]
    Palkina L A, Smirnov B M and Chibisov M I 1969 Sov. J. Exp. Theor. Phys. 29 187
    [32]
    Frost L S 1957 Phys. Rev. 105 354
    [33]
    Blanc A 1908 J. Phys. Theor. Appl. 7 825
    [34]
    Bouchikhi A 2012 Plasma Sci. Technol. 14 965
    [35]
    Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Devices 16 64
    [36]
    Chapman B 1980 Glow Discharge Processes (New York: Wiley)
    [37]
    Almeida P G C, Benilov M S and Faria M J 2010 Plasma Sources Sci. Technol. 19 025019
  • Related Articles

    [1]Yiming ZU, Zhiwei MA, Yuchen XU. Magnetohydrodynamic simulation study of impurity radiation-excited and driven tearing mode[J]. Plasma Science and Technology, 2025, 27(3): 035102. DOI: 10.1088/2058-6272/ad9e91
    [2]Lili DONG, Li LI, Wenjun LIU, Tong LIU, Yunfeng LIANG, Jiaqi DONG, Huasheng XIE, Yuejiang SHI, the EHL-2 Team. Instabilities of ideal magnetohydrodynamics mode and neoclassical tearing mode stabilization by electron cyclotron current drive for EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024006. DOI: 10.1088/2058-6272/ada421
    [3]Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7
    [4]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [5]Liping DONG (董丽平), Yanmin DUAN (段艳敏), Kaiyun CHEN (陈开云), Xiuda YANG (杨秀达), Ling ZHANG (张凌), Feng XU (徐峰), Jingbo CHEN (陈竞博), Songtao MAO (毛松涛), Zhenwei WU (吴振伟), Liqun HU (胡立群). Influence of impurity seeding on the plasma radiation in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65102-065102. DOI: 10.1088/2058-6272/aab20c
    [6]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [7]Le Chi KIEN. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator[J]. Plasma Science and Technology, 2016, 18(6): 674-679. DOI: 10.1088/1009-0630/18/6/15
    [8]LI Mei (李美), ZHANG Junpeng (张俊鹏), HU Yang (胡杨), ZHANG Hantian (张含天), WU Yifei (吴益飞). Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank[J]. Plasma Science and Technology, 2016, 18(5): 549-553. DOI: 10.1088/1009-0630/18/5/18
    [9]SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
    [10]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04

Catalog

    Article views (289) PDF downloads (769) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return