Advanced Search+
Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
Citation: Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced

Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor

Funds: The financial support for this research was provided by National Natural Science Foundation of China (No. 21577023), the Key Project supported by the Science and Technology Commission of Shanghai Municipality (No. 15DZ1205904), and Technology Innovation and Energy Saving Enhancement Project supported by Shanghai SASAC (No. 2013019). The authors thank Jianyuan Hou for his help in the research work.
More Information
  • Received Date: March 27, 2017
  • This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor. Alumina oxide (Al2O3), glass (SiO2) and zirconium oxide (ZrO2), three different spherical packed materials of the same size, were each present in the DBD reactor. The NO conversion under varying input voltage and specific energy density, and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnOx) coated on Al2O3) on NO conversion were investigated. The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor, and the catalytic packed bed of MnOx/Al2O3 showed better performance than that of TiO2/Al2O3. The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis. The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.
  • [1]
    Dickey J H 2000 Dis. Mon. 46 566
    [2]
    Boroń P, Chemielarz L and Dzwigaj S 2015 Appl. Catal. B Environ. 168–169 377
    [3]
    Liu Y X et al 2013 Fuel 108 254
    [4]
    Gu H M et al 2015 Chem. Eng. J. 264 211
    [5]
    Chang M B and Yang S C 2001 AIChE J. 47 1226
    [6]
    Moscosa-Santillan M et al 2008 J. Clean. Prod. 16 198
    [7]
    Obradovi? B M, Sretenovi? G B and Kuraica M M 2011 J. Hazard. Mater. 185 1280
    [8]
    Saavedra H M et al 2007 IEEE Trans. Plasma Sci. 35 1533
    [9]
    Gandhi M S and Mok Y S 2014 Surf. Coating Technol. 259 12
    [10]
    Sun Y L et al 2012 J. Environ. Sci. 24 891
    [11]
    Liang W J et al 2009 J. Hazard. Mater. 170 633
    [12]
    Hu J et al 2016 Plasma Sci. Technol. 18 254
    [13]
    Tu X et al 2011 Phys. Plasmas 18 080702
    [14]
    Zhang Y et al 2015 New J. Phys. 17 083056
    [15]
    Horvath G et al 2010 Plasma Chem. Plasma Process. 30 565
    [16]
    Gómez-Ramírez A et al 2015 Plasma Sources Sci. Technol. 24 065011
    [17]
    Van Durme J et al 2008 Appl. Catal. B Environ. 78 324
    [18]
    Patil B S et al 2016 Appl. Catal. B Environ. 194 123
    [19]
    Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011
    [20]
    Zhu B et al 2016 J. Phys. D: Appl. Phys. 49 135106
    [21]
    Cooray V and Rahman M 2005 J. Electrostat. 63 977
    [22]
    Delagrange S, Pinard L and Tatibou?t J M 2006 Appl. Catal. B Environ. 68 92
    [23]
    Seo P W et al 2010 Appl. Catal. A Gen. 380 21
    [24]
    Ramis G, Yi L and Busca G 1996 Catal. Today 28 373
    [25]
    Santos V P et al 2010 Appl. Catal. B Environ. 99 353
    [26]
    Guo Y F et al 2010 Catal. Today 153 176
    [27]
    Deorsola F A et al 2016 Appl. Catal. A Gen. 522 120
    [28]
    Haber J and Witko M 2003 J. Catal. 216 416
    [29]
    Smirniotis P G, Pe?a D A and Uphade B S 2001 Angew. Chem. Int. Ed. 40 2479
    [30]
    Kapteijn F, Singoredjo L and Andreini A 1994 Appl. Catal. B Environ. 3 173
    [31]
    Singoredjo L et al 1992 Appl. Catal. B Environ. 1 297
    [32]
    Guo Y F et al 2007 Catal. Today 126 328
    [33]
    Shibata I et al 2006 Cellulose 13 73
    [34]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
    [35]
    Gaydon A G 1974 The Spectroscopy of Flames 2nd edn (London: Chapman and Hall) p 265
    [36]
    Callear A B and Pilling M J 1970 Trans. Faraday Soc. 66 1618
    [37]
    Stull D R and Prophet H 1971 JANAF Thermochemical Tables 2nd edn (Washington, DC: US Government Printing Of?ce) p37
    [38]
    Rosen B 1985 Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations (New York: Pergamon Press) p17
    [39]
    Hou J T et al 2013 Environ. Sci. Technol. 47 13730
    [40]
    Li J H et al 2009 Appl. Catal. B Environ. 90 360
    [41]
    Wang T and Sun B M 2016 Fuel Process. Technol. 144 109
    [42]
    Zhu A M et al 2005 Plasma Chem. Plasma Process. 25 371

Catalog

    Article views (238) PDF downloads (647) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return