Advanced Search+
Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
Citation: Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a

Characteristics of temporal evolution of particle density and electron temperature in helicon discharge

More Information
  • Received Date: June 05, 2017
  • On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL MultiphysicsTM with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.
  • [1]
    Biloiu C et al 2005 Plasma Sources Sci. Technol. 14 766
    [2]
    Charles C and Boswell R W 2003 Appl. Phys. Lett. 82 1356
    [3]
    Perry A J and Boswell R W 1989 Appl. Phys. Lett. 55 148
    [4]
    Marinov D et al 2015 Plasma Sources Sci. Technol. 24 065008
    [5]
    Charles C and Boswell R W 1998 J. Appl. Phys. 84 350
    [6]
    Clarenbach B et al 2003 Plasma Sources Sci. Technol. 12 345
    [7]
    Biloiu I A and Scime E E 2009 Appl. Phys. Lett. 95 051504
    [8]
    Ashida S, Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 2498
    [9]
    Lieberman M and Ashida S 1996 Plasma Sources Sci. Technol. 5 145
    [10]
    Yoon M et al 1998 J. Korean Phys. Soc. 32 L635
    [11]
    Cho S 1999 Phys. Plasmas 6 359
    [12]
    Ziemba T et al 2006 Plasma Sources Sci. Technol. 15 517
    [13]
    Clarenbach B, Kr?mer M and Lorenz B 2007 J. Phys. D: Appl. Phys. 40 5117
    [14]
    Takahashi K, Takao Y and Ando A 2016 Appl. Phys. Lett. 108 074103
    [15]
    Boswell R W and Vender D 1995 Plasma Sources Sci. Technol. 4 534
    [16]
    Chang L et al 2012 Phys. Plasmas 19 083511
    [17]
    Chang L, Breizman B N and Hole M J 2013 Plasma Phys. Control. Fusion 55 025003
    [18]
    Chang L et al 2016 Plasma Sci. Technol. 18 848
    [19]
    Yang X et al 2017 Acta Phys. Sin. 66 025201
    [20]
    Ahedo E and Navarro-Cavallé J 2013 Phys. Plasmas 20 043512
    [21]
    Cheng Y G et al 2014 Plasma Sci. Technol. 16 1111
    [22]
    Chen F F and Curreli D 2013 Phys. Plasmas 20 057102
    [23]
    Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
    [24]
    Fischer B, Kramer M and Enk T 1994 Plasma Phys. Control. Fusion 36 2003
    [25]
    Kamenski I V and Borg G G 1996 Phys. Plasmas 3 4396
    [26]
    Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
    [27]
    Lymberopoulos D P and Economou D J 1995 J. Res. Natl Inst. Stand. Technol. 100 473
    [28]
    Sternberg N, Godyak V and Hoffman D 2006 Phys. Plasma 13 063511
    [29]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [30]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [31]
    Cho S 1996 Phys. Plasmas 3 4268
    [32]
    Cho S and Kwak J G 1997 Phys. Plasmas 4 4167
    [33]
    Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
    [34]
    Arnush D 2000 Phys. Plasmas 7 3042
    [35]
    Chen F F 2003 Phys. Plasmas 10 2586
    [36]
    Vl?ek J 1989 J. Phys. D: Appl. Phys. 22 623
    [37]
    Vl?ek J and Pelikan V 1989 J. Phys. D: Appl. Phys. 22 632

Catalog

    Article views (259) PDF downloads (662) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return