Advanced Search+
Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
Citation: Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c

Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges

Funds: This work is sponsored by National Natural Science Foundation of China under Grant Nos. 11505044, 11405042 and 11421064, the Natural Science Foundation of Hebei Province under Grant No. A2016201066, the Research Foundation of Education Bureau of Hebei province under Grant No. BJ2016006, and the Midwest Universities Comprehensive Strength Promotion Project.
More Information
  • Received Date: June 08, 2017
  • The plasma behavior of filamentary barrier discharges in helium is simulated using a two-dimensional (2D) particle-in-cell/Monte Carlo model. Four different phases have been suggested in terms of the development of the discharge: the Townsend phase; the space-charge dominated phase; the formation of the cathode layer, and the extinguishing phase. The spatial-temporal evolution of the particle densities, velocities of the charged particles, electric fields, and surface charges has been demonstrated. Our simulation provides insights into the underlying mechanism of the discharge and explains many dynamical behaviors of dielectric barrier discharge (DBD) filaments.
  • [1]
    Raizer Y P and Mokrov M S 2013 Phys. Plasmas 20 101604
    [2]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [3]
    Wei L Y et al 2016 J. Phys. D: Appl. Phys. 49 185203
    [4]
    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
    [5]
    WangYH andWangDZ2004 Chin. Phys. Lett. 21 2234
    [6]
    Luo H Y et al 2007 Appl. Phys. Lett. 91 221504
    [7]
    QiaoY J, Li B and Ouyang J T 2016 Phys. Plasmas 23 013510
    [8]
    Callegari T, Bernecker B and Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003
    [9]
    Gurevich E L et al 2003 Phys. Rev. Lett. 91 154501
    [10]
    Boeuf J P et al 2012 Appl. Phys. Lett. 100 244108
    [11]
    Liu F C et al 2016 Phys. Plasmas 23 032301
    [12]
    Zhang J, Wang Y H and Wang D Z 2015 Phys. Plasmas 22 043517
    [13]
    Xu Y G et al 2017 Phys. Plasmas 24 043507
    [14]
    Zhang Y, Wang H Y, Jiang W and Bogaerts A 2015 New J. Phys. 17 083056
    [15]
    Carlsson J et al 2017 Plasma Sources Sci. Technol. 26 014003
    [16]
    Fan W L et al 2013 Appl. Phys. Lett. 102 094103
    [17]
    Fan W L et al 2013 J. Phys. D: Appl. Phys. 46 475208
    [18]
    Turner M M 2016 Plasma Sources Sci. Technol. 25 054007
    [19]
    Vahedi V and Surendra M 1995 Comput. Phys. Commun. 87 179
    [20]
    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
    [21]
    Verboncoeur J P, Langdon A B and Gladd N T 1995 Comput. Phys. Commun. 87 199
    [22]
    Sang C F, Sun J Z and Wang D Z 2010 J. Phys. D: Appl. Phys. 43 045202
    [23]
    Gulati P et al 2012 IEEE Trans. Plasma Sci. 40 2699
    [24]
    Motoyama Y, Matsuzaki H and Murakami H 2001 IEEE Trans. Electron Devices 48 1568
    [25]
    Choi J and Iza F 2007 IEEE Trans. Plasma Sci. 35 1274
    [26]
    Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231

Catalog

    Article views (332) PDF downloads (558) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return