Advanced Search+
Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
Citation: Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d

Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

Funds: This work was supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005) and the Fundamental Research Funds for the Central Universities (Nos. DUT15RC(3)072, DUT15TD44, DUT16TD13).
More Information
  • Received Date: April 16, 2017
  • As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of theplasmadeviceaccurately, alaser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5×1019 m-3 to 7.1×1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (conguration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE).This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
  • [1]
    Gorokhovsky V I 2005 Surf. Coat. Technol. 194 300
    [2]
    Sugimoto T and Horenstein M 2003 J. Therm. Spray Technol. 12 536
    [3]
    Gilliam M and Yu Q S 2007 J. Appl. Polym. Sci. 105 360
    [4]
    de Groot B et al 2005 Fusion Eng. Des. 74 155
    [5]
    Rapp J et al 2010 Fusion Eng. Des. 85 1455
    [6]
    Scholten J et al 2013 Fusion Eng. Des. 88 1785
    [7]
    Chen F F 2003 Langmuir probe diagnostics, mini-course on plasma diagnostics IEEE-ICOPS Meeting (Jeju, Korea: IEEE)
    [8]
    Bowden M D et al 1999 J. Vac. Sci. Technol. A 17 493
    [9]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
    [10]
    Carbone E and Nijdam S 2015 Plasma Phys. Control. Fusion 57 014026
    [11]
    van Gessel A F H et al 2011 IEEE Trans. Plasma Sci. 39 2383
    [12]
    Kieft E R et al 2004 Phys. Rev. E 70 056413
    [13]
    Qing Z 1990 Thomson scattering and line intensity experiments on a magnetized expanding cascaded arc argon plasma MSc Thesis Eindhoven University of Technology Eindhoven
    [14]
    van de Sanden M C M et al 1992 Rev. Sci. Instrum. 63 3369
    [15]
    Meulenbroeks R F G et al 1994 Phys. Rev. E 49 2272
    [16]
    van der Meiden H J et al 2008 Rev. Sci. Instrum. 79 013505
    [17]
    van der Meiden H J et al 2012 Rev. Sci. Instrum. 83 123505
    [18]
    Shef?eld J 1975 Plasma Scattering of Electromagnetic Radiation (New York: Academic)
    [19]
    Muraoka K, Uchino K and Bowden M D 1998 Plasma Phys. Control. Fusion 40 1221
    [20]
    van de Sande M J 2002 Laser scattering on low temperature plasmas: high resolution and stray light rejection PhD Thesis Eindhoven University of Technology Eindhoven
    [21]
    Li C et al 2013 Plasma Sci. Technol. 15 875
    [22]
    Muraoka K et al 2002 Plasma Sources Sci. Technol. 11 A143
    [23]
    Hübner S et al 2015 Plasma Sources Sci. Technol. 24 054005
    [24]
    Seo B H et al 2015 Phys. Plasmas 22 123502
    [25]
    Hori T et al 1998 J. Appl. Phys. 83 1909
    [26]
    Carbone E A D et al 2012 J. Phys. D: Appl. Phys. 45 475202
    [27]
    van de Sanden M C M, de Regt J M and Schram D C 1994 Plasma Sources Sci. Technol. 3 501
    [28]
    van de Sanden M C M, de Regt J M and Schram D C 1993 Phys. Rev. E 47 2792
    [29]
    Kroesen G M W et al 1991 Contrib. Plasma Phys. 31 27
    [30]
    van der Sijde B 1972 J. Quant. Spectrosc. Radiat. Transfer 12 703
    [31]
    Jonkers J and van der Mullen J A M 1999 J. Quant. Spectrosc. Radiat. Transfer 61 703
    [32]
    Raaijmakers I J M M et al 1983 Spectrochim. Acta B 38 697
    [33]
    Meulenbroeks R F G et al 1994 Phys. Rev. E 49 4397
    [34]
    van der Mullen J A M 1990 Phys. Rep. 191 109

Catalog

    Article views (332) PDF downloads (711) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return