Advanced Search+
N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
Citation: N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7

OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet

Funds: Partial financial support has been provided by the University Grants Commission: A-663-5/52/UGC/Eng-9/2013 and A-670-5/52/UGC/Eng-4/2013
More Information
  • Received Date: July 18, 2017
  • Atmospheric pressure air/Ar/H2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic (OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx ≈5550–9000 K, rotational Tr≈1350–2700 K and gas Tg≈850–1600 K temperatures, and electron density ne ≈(1.1-1.9 )× 1014 cm-3 under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. ne reveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H2O and O2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced ne. The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tg significantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.
  • [1]
    Ahmar E E et al 2005 Chem. Eng. J. 116 13
    [2]
    Young N C, Yang Y C and Yoshikawa K 2009 Catalysis 148 283
    [3]
    Thomas M and Mittal K L 2013 Atmospheric Pressure Plasma Treatment of Polymer (New Jersey: Scrivener)
    [4]
    Kusano Y 2014 J. Adhes. 90 755
    [5]
    Alves P et al 2011 J. Appl. Polym. Sci. 122 2302
    [6]
    Yu L et al 2010 J. Phys. Chem. A 114 360
    [7]
    Czernichowski A 1994 Pure Appl. Chem. 66 1301
    [8]
    Wright K C et al 2014 Desalination 345 64–71
    [9]
    Jiang B et al 2014 Chem. Eng. 236 348
    [10]
    Du C M et al 2014 IEEE Trans. Plasma Sci. 42 2221
    [11]
    Du C M et al 2012 New J. Phys. 14 013010
    [12]
    Lu S Y et al 2012 Phy. Plasmas 19 072122
    [13]
    Misra N N, Schluter O and Cullen P J 2008 Cold Plasma in Food and Agriculture (Amsterdam: Academic)
    [14]
    Sivachandiran L and Khacef A 2017 RSC Adv. 7 1822
    [15]
    del Río L A 2015 J. Exp. Botany 66 2827
    [16]
    Zhu J et al 2014 Appl. Phys. Lett. 105 234102
    [17]
    Zhu J et al 2014 J. Phys. D: Appl. Phys. 47 295203
    [18]
    Zhang C et al 2014 Plasma Sources Sci. Technol. 23 035004
    [19]
    Poto?ňáková L et al 2017 Plasma Sources Sci. Technol. 26 045014
    [20]
    Park H S et al 2010 Phys. Plasmas 17 033502
    [21]
    Ono R 2016 J. Phys. D: Appl. Phys. 49 083001
    [22]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci. Technol. 19 045025
    [23]
    Li L et al 2013 Phys. Plasmas 20 093502
    [24]
    Roy N C, Hafez M G and Talukder M R 2016 Phys. Plasmas 23 083502
    [25]
    Anghel S D and Simon A 2007 Meas. Sci. Technol. 18 2642
    [26]
    Belmonte T et al 2015 Plasma Sources Sci. Technol. 24 064003
    [27]
    Thiyagarajan M, Sarani A and Cosmina N 2013 J. Appl. Phys. 113 233302
    [28]
    Bruggeman P J et al 2014 Plasma Sources Sci. Technol. 23 023001
    [29]
    Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001
    [30]
    Itikawa Y and Mason N 2005 J. Phys. Chem. Ref. Data 34 1
    [31]
    Nikiforov A et al 2014 Plasma Sources Sci. Technol. 23 015015
    [32]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [33]
    Cheng Z W et al 2015 J. Phys. D: Appl. Phys. 48 285202
    [34]
    Bleker A S et al 2016 Plasma Sources Sci. Technol. 25 015005
    [35]
    Nikiforov A Y, Sarani A and Leys C 2011 Plasma Sources Sci. Technol. 20 015014
    [36]
    Popov N A 2013 J. Phys. D: Appl. Phys. 46 355204
    [37]
    Moravej M et al 2006 Plasma Sources Sci. Technol. 15 204–10
    [38]
    Attri P et al 2015 Scienti?c Report 5 17781
    [39]
    Capitelli M et al 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Springer)
    [40]
    Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic)
    [41]
    LIEBASE (version 1.9)(http://sri.com/cem/lifbase)
    [42]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [43]
    Hollas J M 2004 Modern Spectroscopy (Chicester: Wiley)
    [44]
    Gil A Y et al 2007 J. Appl. Phys. 101 103307
    [45]
    Zhang S et al 2015 J. Phys. D: Appl. Phys. 48 015203
    [46]
    Hofmann S et al 2011 Plasma Sources Sci. Technol. 20 065010
    [47]
    Gil A Y, Cotrino J and González-Elipe A R 2006 J. Appl. Phys. 99 033104
    [48]
    Hans-Joachim K 2009 Introduction to Plasma Spectroscopy (Heidelberg: Springer)
    [49]
    National Institute of Standard and Technology (NIST), (www. physics.nist.gov/PhysRefData/ ASD/lines_form.html)
    [50]
    Dong M et al 2012 J. Anal. At. Spectrom. 27 2066

Catalog

    Article views (264) PDF downloads (607) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return