Advanced Search+
N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
Citation: N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7

OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet

Funds: Partial financial support has been provided by the University Grants Commission: A-663-5/52/UGC/Eng-9/2013 and A-670-5/52/UGC/Eng-4/2013
More Information
  • Received Date: July 18, 2017
  • Atmospheric pressure air/Ar/H2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic (OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx ≈5550–9000 K, rotational Tr≈1350–2700 K and gas Tg≈850–1600 K temperatures, and electron density ne ≈(1.1-1.9 )× 1014 cm-3 under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. ne reveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H2O and O2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced ne. The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tg significantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.
  • [1]
    Ahmar E E et al 2005 Chem. Eng. J. 116 13
    [2]
    Young N C, Yang Y C and Yoshikawa K 2009 Catalysis 148 283
    [3]
    Thomas M and Mittal K L 2013 Atmospheric Pressure Plasma Treatment of Polymer (New Jersey: Scrivener)
    [4]
    Kusano Y 2014 J. Adhes. 90 755
    [5]
    Alves P et al 2011 J. Appl. Polym. Sci. 122 2302
    [6]
    Yu L et al 2010 J. Phys. Chem. A 114 360
    [7]
    Czernichowski A 1994 Pure Appl. Chem. 66 1301
    [8]
    Wright K C et al 2014 Desalination 345 64–71
    [9]
    Jiang B et al 2014 Chem. Eng. 236 348
    [10]
    Du C M et al 2014 IEEE Trans. Plasma Sci. 42 2221
    [11]
    Du C M et al 2012 New J. Phys. 14 013010
    [12]
    Lu S Y et al 2012 Phy. Plasmas 19 072122
    [13]
    Misra N N, Schluter O and Cullen P J 2008 Cold Plasma in Food and Agriculture (Amsterdam: Academic)
    [14]
    Sivachandiran L and Khacef A 2017 RSC Adv. 7 1822
    [15]
    del Río L A 2015 J. Exp. Botany 66 2827
    [16]
    Zhu J et al 2014 Appl. Phys. Lett. 105 234102
    [17]
    Zhu J et al 2014 J. Phys. D: Appl. Phys. 47 295203
    [18]
    Zhang C et al 2014 Plasma Sources Sci. Technol. 23 035004
    [19]
    Poto?ňáková L et al 2017 Plasma Sources Sci. Technol. 26 045014
    [20]
    Park H S et al 2010 Phys. Plasmas 17 033502
    [21]
    Ono R 2016 J. Phys. D: Appl. Phys. 49 083001
    [22]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci. Technol. 19 045025
    [23]
    Li L et al 2013 Phys. Plasmas 20 093502
    [24]
    Roy N C, Hafez M G and Talukder M R 2016 Phys. Plasmas 23 083502
    [25]
    Anghel S D and Simon A 2007 Meas. Sci. Technol. 18 2642
    [26]
    Belmonte T et al 2015 Plasma Sources Sci. Technol. 24 064003
    [27]
    Thiyagarajan M, Sarani A and Cosmina N 2013 J. Appl. Phys. 113 233302
    [28]
    Bruggeman P J et al 2014 Plasma Sources Sci. Technol. 23 023001
    [29]
    Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001
    [30]
    Itikawa Y and Mason N 2005 J. Phys. Chem. Ref. Data 34 1
    [31]
    Nikiforov A et al 2014 Plasma Sources Sci. Technol. 23 015015
    [32]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [33]
    Cheng Z W et al 2015 J. Phys. D: Appl. Phys. 48 285202
    [34]
    Bleker A S et al 2016 Plasma Sources Sci. Technol. 25 015005
    [35]
    Nikiforov A Y, Sarani A and Leys C 2011 Plasma Sources Sci. Technol. 20 015014
    [36]
    Popov N A 2013 J. Phys. D: Appl. Phys. 46 355204
    [37]
    Moravej M et al 2006 Plasma Sources Sci. Technol. 15 204–10
    [38]
    Attri P et al 2015 Scienti?c Report 5 17781
    [39]
    Capitelli M et al 2000 Plasma Kinetics in Atmospheric Gases (Berlin: Springer)
    [40]
    Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic)
    [41]
    LIEBASE (version 1.9)(http://sri.com/cem/lifbase)
    [42]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [43]
    Hollas J M 2004 Modern Spectroscopy (Chicester: Wiley)
    [44]
    Gil A Y et al 2007 J. Appl. Phys. 101 103307
    [45]
    Zhang S et al 2015 J. Phys. D: Appl. Phys. 48 015203
    [46]
    Hofmann S et al 2011 Plasma Sources Sci. Technol. 20 065010
    [47]
    Gil A Y, Cotrino J and González-Elipe A R 2006 J. Appl. Phys. 99 033104
    [48]
    Hans-Joachim K 2009 Introduction to Plasma Spectroscopy (Heidelberg: Springer)
    [49]
    National Institute of Standard and Technology (NIST), (www. physics.nist.gov/PhysRefData/ ASD/lines_form.html)
    [50]
    Dong M et al 2012 J. Anal. At. Spectrom. 27 2066
  • Related Articles

    [1]Chunxia LIANG (梁春霞), Ning WANG (王宁), Zhengchao DUAN (段正超), Feng HE (何锋), Jiting OUYANG (欧阳吉庭). Experimental investigations of enhanced glow based on a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2019, 21(2): 25401-025401. DOI: 10.1088/2058-6272/aaef49
    [2]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [3]Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
    [4]Ling ZHANG (张玲), Guo CHEN (陈果), Zhibing HE (何智兵), Xing AI (艾星), Jinglin HUANG (黄景林), Lei LIU (刘磊), Yongjian TANG (唐永建), Xiaoshan HE (何小珊). Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma[J]. Plasma Science and Technology, 2017, 19(7): 75505-075505. DOI: 10.1088/2058-6272/aa6618
    [5]LIU Wenzheng (刘文正), LEI Xiao (雷晓), ZHAO Qiang (赵强). Study on Glow Discharge Plasma Used in Polyester Surface Modification[J]. Plasma Science and Technology, 2016, 18(1): 35-40. DOI: 10.1088/1009-0630/18/1/07
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]LI Yan(李岩), YAO Mengqi(姚萌奇), LIAO Ruirui(廖瑞瑞), YANG Wu(杨武), GAO Jinzhang(高锦章), REN Jie(任杰). Synthesis of Poly (Butyl Methacrylate/Butyl Acrylate) Highly Absorptive Resin Using Glow Discharge Electrolysis[J]. Plasma Science and Technology, 2014, 16(8): 777-781. DOI: 10.1088/1009-0630/16/8/08
    [8]A. SAEED, A. W. KHAN, M. SHAFIQ, F. JAN, M. ABRAR, M. ZAKA-UL-ISLAM, M. ZAKAULLAH. Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2014, 16(4): 324-328. DOI: 10.1088/1009-0630/16/4/05
    [9]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [10]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10

Catalog

    Article views (264) PDF downloads (607) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return