Advanced Search+
Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
Citation: Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0

Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

Funds: This work was made possible by the support of Deutsche Forschungsgemeinschaft, DFG #FR 1553/6-1.
More Information
  • Received Date: May 07, 2017
  • Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V ) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V ) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V ) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ±5%, the etch rate shows a slightly concave shape in contrast to the plasma density.
  • [1]
    Kim B-J, Mastro M A, Jung H, Kim H-Y, Kim S H, Holm R T, Hite J, Eddy C R Jr, Bang J and Kim J 2008 Thin Solid Films 516 7744
    [2]
    Wise R 2013 J. Micro/Nanolith. 12 041311
    [3]
    Ding J, Du K, Wathuthanthri I, Choi C-H, Fisher F T and Yang E-H 2014 J. Vac. Sci. Technol. B 32 06FF01
    [4]
    Niggebrügge U, Klug M and Garus G 1986 Inst. Phys. Conf. Ser. 79 367
    [5]
    Franz G 2009 Low Pressure Plasmas and Microstructuring Technology (Berlin: Springer)
    [6]
    Halioua Y, Bazin A, Monnier P, Karle T J, Roelkens G, Sagnes I, Raj R and Raineri F 2011 Opt. Express 19 9221
    [7]
    Baranov A N, Sherstnev V V, Alibert C and Krier A 1996 J. Appl. Phys. 79 3354
    [8]
    Joulli A and Christol P 2003 C. R. Phys. 4 621
    [9]
    Le H Q, Turner G W, Eglash S J, Choi H K and Coppeta D A 1994 Appl. Phys. Lett. 64 152
    [10]
    Paramanik D, Motayed A, Aluri G S, Ha J-Y, Krylyuk S, Davydov A V, King M, McLaughlin S, Gupta S and Cramer H 2012 J. Vac. Sci. Technol. B 30 052202
    [11]
    Paramanik D, Suzuki T, Ikeda N, Nagai T and Haesendonck C van 2012 Physica E 44 1644
    [12]
    Vodjdani N and Parrens P 1987 J. Vac. Sci. Technol. B 5 1591
    [13]
    Pearton S J and Ren F 1994 J. Mater. Sci., Mater. Electron. 5 1
    [14]
    Franz G, H?sler W and Treichler R 2001 J. Vac. Sci. Technol. B 19 415
    [15]
    Coburn J W and Chen M 1980 J. Appl. Phys. 51 3134
    [16]
    Donnelly V M 2004 J. Phys. D: Appl. Phys. 37 R217
    [17]
    Coburn J W and Winters H F 1979 J. Vac. Sci. Technol. 16 391
    [18]
    Coburn J W and Winters H F 1979 J. Appl. Phys. 50 3189
    [19]
    Winters H F and Coburn J W 1985 J. Vac. Sci. Technol. B 3 1376
    [20]
    Hershkowitz N 2005 Phys. Plasmas 12 055502
    [21]
    Langendorf S J and Walker M L R 2014 IEEE 41st Intern. Conf. Plasma Sciences (ICOPS)(Washington, DC, 25–29, May 2014)
    [22]
    Loewenstein L M, Stefani J A and Watts B S 1994 J. Vac. Sci. Technol. B 12 2810
    [23]
    Steinbach A, Sussiek M, Bernhard S, Wurm S, Koelbl C, K?hler D and Knobloch D 1999 Proc. Europ. Symp. Microelectronic Manufacturing Technologies (Edinburgh, 19–21, May, 1999)
    [24]
    Takahashi K, Hori M and Goto T 1996 J. Vac. Sci. Technol. A 14 2004
    [25]
    Takahashi K, Hori M and Goto T 1996 J. Vac. Sci. Technol. A 14 2011
    [26]
    www.fmm.info/wiki/HomePage
    [27]
    Laframboise J G 1966 UTIAS Report No. 100 University of Toronto equation (14.5), ?gures 38–42
    [28]
    Franz G 2009 Low Pressure Plasmas and Microstructuring Technology (Berlin: Springer) p 607
    [29]
    Franz G 2001 J. Vac. Sci. Technol. A 19 762
    [30]
    Franssila S 2004 Introduction to Microfabrication (Chichester, West Sussex: Wiley) p 203
    [31]
    Popov O A 2013 ECR plasma sources: design and characteristics Plasma Sources for Thin Film Deposition and Etching ed M H Francombe and J L Vossen (Boston, MA: Academic) ch3, pp122–234
    [32]
    Gorbatkin S M, Berry L A and Roberto J B 1990 J. Vac. Sci. Technol. A 8 2893
    [33]
    Rundle H W, Clark D R and Deckers J M 1973 Can. J. Phys. 51 144
    [34]
    Behringer K and Fantz U 1994 J. Phys. D: Appl. Phys. 27 2128
    [35]
    Mott-Smith H M and Langmuir I 1926 Phys. Rev. 28 727
    [36]
    El Saghir A and Shannon S 2012 Plasma Sources Sci. Technol. 21 025033
    [37]
    Hershkowitz N 1989 How Langmuir probes work Plasma Diagnostics ed O Auciello and D L Flamm (Boston, MA: Academic)
    [38]
    Druyvesteyn M J 1930 Z. Phys. 64 781
    [39]
    Knappmiller S, Robertson S and Sternovsky Z 2006 Phys. Rev. E 73 066402
    [40]
    El Saghir A, Kennedy C and Shannon S 2010 IEEE Trans. Plasma Sci. 38 156
    [41]
    Knappmiller S, Robertson S and Sternovsky Z 2006 IEEE Trans. Plasma Sci. 38 156 equations (22)–(25)
    [42]
    Savitzky A and Golay M J E 1964 Anal. Chem. 36 1627
    [43]
    Allen J E, Boyd R L F and Reynolds P 1957 Proc. R. Soc. B 70 297
    [44]
    Tozer B A and Craggs J D 1960 J. Electron. Control 8 103
    [45]
    Ghanbari A, Ameen M S and Heinrich R S 1992 J. Vac. Sci. Technol. A 10 1276
    [46]
    Junck K L and Getty W D 1994 J. Vac. Sci. Technol. A 12 2767
    [47]
    Forster J and Holber W 1989 J. Vac. Sci. Technol. A 7 899
    [48]
    El Saghir A and Shannon S 2011 IEEE Trans. Plasma Sci. 39 596
    [49]
    Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley) p 80, 360
    [50]
    Yonesu A, Shinohara S, Yamashiro Y and Kawai Y 2001 Thin Solid Films 390 208
    [51]
    Donnelly V M and Malyshev M V 2000 Appl. Phys. Lett. 77 2467
    [52]
    Bai B and Sawin H 2004 J. Vac. Sci. Technol. A 22 2014
    [53]
    Rapp D and Englander-Golden P 1965 J. Chem. Phys. 43 1464
    [54]
    Stebbings R F and Lindsay B G 2001 J. Chem. Phys. 114 4741
    [55]
    Kurepa M V and Belic D S 1978 J. Phys. B: At. Mol. Phys. 11 3719
    [56]
    Lotz W 1967 Z. Phys. 206 205
    [57]
    Eddy C R Jr, Leonhardt D, Douglas S R, Thoms B D, Shamamian V A and Butler J E 1999 J. Vac. Sci. Technol. A 17 38
    [58]
    Godyak V A 1986 Soviet Radio Frequency Discharge Research (Falls Church, VA: Delphic Ass., Inc.) ch 3, pp 86–90
    [59]
    Fu S, Chen J, Wu X, Wang N, Zhang M and Hu S 2006 Plasma Sci. Technol. 8 300
    [60]
    Fu S-L, Chen J, Hu S-J, Wu X-Q, Lee Y and Fan S-L 2006 Plasma Sources Sci. T 15 187
    [61]
    Awakowicz P 1998 Mater. Sci. Forum 287–288 3
    [62]
    Boffard J B, Lin C C and deJoseph C A jr 2004 J. Phys. D: Appl. Phys. 37 R143
    [63]
    Tsurubuchi S, Miyazaki T and Motohashi K 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1785
    [64]
    Tsurubuchi S 1997 J. Phys. Soc. Japan. 66 3070
    [65]
    Tsurubuchi S, Kobayashi H and Hyodo M 2003 J. Phys. B: At. Mol. Opt. Phys. 36 2629
    [66]
    Bethe H A and Salpeter E E 1957 Quantum Mechanics of One-and Two-Electron Systems (Handbuch der Physik vol 35) ed S Flügge (Berlin: Springer) Atome 1
    [67]
    Bethe H 1930 Ann. Phys. 397 325
    [68]
    Inokuti M 1971 Rev. Mod. Phys. 43 297
    [69]
    Outten C A, Barbour J C and Wampler W R 1991 J. Vac. Sci. Technol. A 9 717
    [70]
    Shatas A A, Hu Y Z and Irene E A 1992 J. Vac. Sci. Technol. A 10 3119
    [71]
    Sawin H H 1985 Solid State Technol. 28 211
    [72]
    Franz G 1998 J. Vac. Sci. Technol. A 16 1542
    [73]
    Franz G and Rinner F 1999 J. Vac. Sci. Technol. A 17 56
    [74]
    Franz G J. Vac. Sci. Technol. A 23 369
    [75]
    Pearton S J, Hobson W S, Baiocchi F A, Emerson A B and Jones K S 1990 J. Vac. Sci. Technol. B 8 57
    [76]
    Ko K K and Pang S W 1993 J. Vac. Sci. Technol. B 11 2275
    [77]
    Aoyagi Y and Megruo T 1997 Proc. 26th State-of-the-Art Program on Compound Semiconductors (SOTAPOCS XXVI)ed D N Buckley p 66
    [78]
    Dienelt J, Zimmer K and Rauschenbach B 2001 GaAs 2001 Conf. Proc., The 9th European Gallium Arsenide and Other Semiconductors Application Symp. (London: Microwave Engineering Europe, CMP Europe Ltd.) pp 9?12
    [79]
    Rhallabi A, Gaillard M, Elmonser L and Bouadma N 2005 J. Vac. Sci. Technol. B 23 1984
    [80]
    Starowieski K B and Klabunde K J 1989 Appl. Organomet. Chem. 3 219
    [81]
    Farnia M and Moalem M 2010 Methods and apparatus for making gallium nitride and gallium aluminum nitride US Patent US 2010 0139 554 A
    [82]
    Zaitsev A B and Woudenberg R H 2012 Process for the preparation of trialkyl gallium European Patent WO 2012 1502 29 A1
    [83]
    Karch R, Rivas-Nass A, Frey A, Burkert T, Woerner E and Doppiu A 2015 Process for preparing trialkylgallium compounds US Patent US 9108 985 B2
    [84]
    Beheim G and Salupo C S 2000 Mater. Res. Soc. Symp. Proc. 622 1
    [85]
    Shearn M, Sun X, Henry M D, Yariv A and Scherer A 2010 Advanced Plasma Processing: Etching, Deposition, and Wafer Bonding Techniques for Semiconductor Applications ed J Grym (InTech) ch 5 (https://doi.org/10.5772/8564)
    [86]
    Wo K K, Pang S W and Dahimene M 1996 J. Vac. Sci. Technol. A 14 2020
    [87]
    Mogab C J 1977 J. Electrochem. Soc. 124 1262

Catalog

    Article views (195) PDF downloads (571) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return