Advanced Search+
Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
Citation: Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc

Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma

Funds: We acknowledge the support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400).
More Information
  • Received Date: July 06, 2017
  • In this paper, we investigated the influence of sample temperature on the expansion dynamics and the optical emission spectroscopy of laser-induced plasma, and Ge was selected as the test sample. The target was heated from room temperature (22 °C) to 300 °C, and excited in atmospheric environment by using a Q-Switched Nd:YAG pulse laser with the wavelength of 1064 nm. To study the plasma expansion dynamics, we observed the plasma plume at different laser energies (5.0, 7.4 and 9.4 mJ) and different sample temperatures by using time-resolved image. We found that the heated target temperature could accelerate the expansion of plasma plume. Moreover, we also measured the effect of target temperature on the optical emission spectroscopy and signal-to-noise ratio.
  • [1]
    Botros B B and Brisson J G 2013 Int. J. Heat Mass Transfer 61 129
    [2]
    Sturm V, Peter L and Noll R 2000 Appl. Spectrosc. 54 1275
    [3]
    Sturm V et al 2004 J. Anal. At. Spectrom. 19 451
    [4]
    Yang H X et al 2016 Chin. Phys. B 25 065201
    [5]
    Barbini R et al 2002 Spectrochim. Acta B 57 1203
    [6]
    Niu L et al 2002 Appl. Spectrosc. 56 1511
    [7]
    Bai X et al 2013 Spectrochim. Acta B 87 27
    [8]
    Chen T et al 2011 Appl. Laser 31 478
    [9]
    Benedetti P A et al 2005 Spectrochim. Acta B 60 1392
    [10]
    Colao F et al 2002 Spectrochim. Acta B 57 1167
    [11]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
    [12]
    Wang Y et al 2016 Plasma Sci. Technol. 18 1192
    [13]
    Lin X M, Li H and Yao Q H 2015 Plasma Sci. Technol. 17 953
    [14]
    Bulatov V V, Krasniker R and Schechter I I 2000 Anal. Chem. 72 2987
    [15]
    Shao J et al 2017 Plasma Sci. Technol. 19 025506
    [16]
    Meng D S et al 2015 Plasma Sci. Technol. 17 632
    [17]
    Mason K J and Goldberg J M 1991 Appl. Spectrosc. 45 370
    [18]
    Rai V N et al 2003 Laser Part. Beams 21 65
    [19]
    Wu D et al 2016 Plasma Sci. Technol. 18 364
    [20]
    Liu Y, Penczak J S and Gordon R J 2010 Opt. Lett. 35 112
    [21]
    Majd A E, Arabanian A S and Massudi R 2010 Opt. Lasers Eng. 48 750
    [22]
    Lopezmoreno C et al 2005 J. Anal. At. Spectrom. 20 552
    [23]
    Su C F et al 2000 Glass Technol. 41 16
    [24]
    Scaf?di J et al 2004 Appl. Opt. 43 2786
    [25]
    Yun J I, Klenze R and Kim J I 2002 Appl. Spectrosc. 56 852
    [26]
    Lopezmoreno C, Palanco S and Laserna J J 2005 J. Anal. At. Spectrom. 20 1275
    [27]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [28]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481
    [29]
    Yahng J S, Nam J R and Jeoung S C 2009 Opt. Lasers Eng. 47 815
    [30]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [31]
    Pan C Y et al 2013 Spectrosc. Spectral Anal. 33 3388
    [32]
    Farid N et al 2013 J. Nucl. Mater. 438 183
    [33]
    Farid N et al 2014 J. Appl. Phys. 115 277
    [34]
    Harilal S S et al 1998 Appl. Phys. Lett. 72 167
    [35]
    Camacho J J et al 2016 Appl. Spectrosc. 70 1228
    [36]
    Yahng J S and Jeoung S C 2011 Opt. Lasers Eng. 49 1040
    [37]
    Darbani S M R et al 1990 J. Eur. Opt. Soci. Rapid Publ. 9 14058
    [38]
    Sato Y S et al 1999 Metall. Mater. Trans. A 30 2429
    [39]
    Palanco S et al 1999 J. Anal. At. Spectrom. 14 1883
    [40]
    Eschlb?ck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [41]
    Chaleard C et al 1997 J. Anal. At. Spectrom. 12 183
    [42]
    Corsi M et al 2004 Spectrochim. Acta B 59 723
  • Related Articles

    [1]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [2]Xinlei ZHU (朱鑫磊), Liancheng ZHANG (张连成), Yifan HUANG (黄逸凡), Jin WANG (王晋), Zhen LIU (刘振), Keping YAN (闫克平). The effect of the configuration of a single electrode corona discharge on its acoustic characteristics[J]. Plasma Science and Technology, 2017, 19(7): 75403-075403. DOI: 10.1088/2058-6272/aa6716
    [3]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [4]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [5]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [6]REN Jingyu (任景俞), WANG Tiecheng (王铁成), QU Guangzhou (屈广周), LIANG Dongli (梁东丽), HU Shibin (呼世斌). Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment[J]. Plasma Science and Technology, 2015, 17(12): 1053-1060. DOI: 10.1088/1009-0630/17/12/13
    [7]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [8]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [9]A. A. AZOOZ, M. A. AHMAD. The Effect of the Earthed Electrode Size on the Ignition Voltage of Low-Pressure RF Capacitive Discharge in Argon[J]. Plasma Science and Technology, 2013, 15(9): 881-884. DOI: 10.1088/1009-0630/15/9/09
    [10]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08

Catalog

    Article views (251) PDF downloads (465) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return