Advanced Search+
Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
Citation: Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0

Breaking of a Langmuir wave in cold electron–positron–ion plasmas

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11665012 and 11247016) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014ZBAB202001 and 2015ZBAB202006).
More Information
  • The space–time evolution of a given density perturbation in cold homogeneous electron–positron–ion plasma is investigated with an assumption of infinitely massive ions by employing a numerical calculation method. The phase-mixing time and wave-breaking time can be effectively distinguished with this method. It is found that an increase of the ratio of equilibrium ion density to equilibrium electron density can attenuate plasma oscillations, leading to a delay in wave breaking. The dependence of the phase-mixing and wave-breaking times on the amplitude of the initial perturbation is also discussed.
  • Related Articles

    [1]Jiujiang YAN, Ke LIU, Jinxiu MA, Yang LI, Kailong LI, Hongwei WEI. Ultra-simplified design and quantitative analysis for the optical system of compact laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2025, 27(3): 035503. DOI: 10.1088/2058-6272/ad9e90
    [2]Weiwei HAN, Duixiong SUN, Guoding ZHANG, Honglin WANG, Kai GUO, Yuzhuo ZHANG, Haoliang WANG, Denghong ZHANG, Chenzhong DONG, Maogen SU. Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method[J]. Plasma Science and Technology, 2024, 26(9): 095502. DOI: 10.1088/2058-6272/ad5119
    [3]Yaxiong HE, Tao XU, Yong ZHANG, Chuan KE, Yong ZHAO, Shu LIU. Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(4): 045506. DOI: 10.1088/2058-6272/ac45e4
    [4]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [5]Xiaomeng LI (李晓萌), Huili LU (陆慧丽), Jianhong YANG (阳建宏), Fu CHANG (常福). Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2019, 21(3): 34015-034015. DOI: 10.1088/2058-6272/aaee14
    [6]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [7]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [8]Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede
    [9]WANG Shaolong (王绍龙), WANG Yangen (王阳恩), CHEN Shanjun (陈善俊), CHEN Qi (陈奇). Quantitative Analysis of Mg in Pipeline Dirt Based on Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 716-720. DOI: 10.1088/1009-0630/17/8/18
    [10]LIN Caishou (林才寿), MAO Li (毛莉), HUANG Ning (黄宁), AN Zhu (安竹). Simulation Study of Quantitative X-Ray Fluorescence Analysis of Ore Slurry Using Partial Least-Squares Regression[J]. Plasma Science and Technology, 2012, 14(5): 427-430. DOI: 10.1088/1009-0630/14/5/22
  • Cited by

    Periodical cited type(10)

    1. Zhang, D., Chen, Z., Nie, J. et al. A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance. Journal of Analytical Atomic Spectrometry, 2024, 39(10): 2402-2408. DOI:10.1039/d4ja00203b
    2. Zhao, S., Zhao, Y., Dai, Y. et al. Methods for optimization of the original signal in laser induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106982
    3. Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216
    4. Fu, H., Wang, H., Zhang, M. et al. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma. Plasma Science and Technology, 2022, 24(8): 084005. DOI:10.1088/2058-6272/ac6b8e
    5. Guo, L.-B., Zhang, D., Sun, L.-X. et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Frontiers of Physics, 2021, 16(2): 22500. DOI:10.1007/s11467-020-1007-z
    6. Liu, J.-M., Wu, D., Li, C. et al. Quantitative analysis of the nickel base alloy by laser-induced breakdown spectroscopy in high vacuum environment | [高真空环境下激光诱导击穿光谱技术对镍基合金的定量分析研究]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 79-85. DOI:10.13228/j.boyuan.issn1000-7571.011204
    7. Maurya, G.S., Marín-Roldán, A., Veis, P. et al. A review of the LIBS analysis for the plasma-facing components diagnostics. Journal of Nuclear Materials, 2020. DOI:10.1016/j.jnucmat.2020.152417
    8. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    9. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    10. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (190) PDF downloads (542) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return