Advanced Search+
Xiaoyu DONG (董晓宇). Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology, 2018, 20(4): 44001-044001. DOI: 10.1088/2058-6272/aa9479
Citation: Xiaoyu DONG (董晓宇). Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology, 2018, 20(4): 44001-044001. DOI: 10.1088/2058-6272/aa9479

Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 21246012, 21306015 and 21476032).
More Information
  • Received Date: August 11, 2017
  • In this study, a novel approach to measure the absolute cytoplasmic Ca2+ concentration ([Ca2+]cyt) using the Ca2+ indicator fluo-3 AM was established. The parameters associated with the probe fluo-3 AM were optimized to accurately determine fluorescence intensity from the Ca2+-bound probe. Using three optimized parameters (final concentration of 6 mM probe, incubation time of 135 min, loading probe before plasma treatment), the maximum fluorescence intensity (Fmax=527.8 a.u.) and the minimum fluorescence intensity (Fmin=63.8 a.u.) were obtained in a saturated Ca2+ solution or a solution of lacking Ca2+. Correspondingly, the maximum
    [Ca2+]cyt induced by cold plasma was 1232.5 nM. Therefore, the Ca2+ indicator fluo-3 AM was successfully applied to measure the absolute
    [Ca2+]cyt in Saccharomyces cerevisiae stimulated by cold plasma at atmospheric air pressure.
  • [1]
    Bengtson C P and Bading H 2012 Adv. Exp. Med. Biol. 970 377
    [2]
    Zeng A P et al 1994 Biotechnol. Bioeng. 44 902
    [3]
    Chen X et al 2003 Appl. Microbiol. Biol. 63 143
    [4]
    Dong X Y et al 2014 Plasma Sci. Technol. 16 73
    [5]
    Dong X Y et al 2017 Plasma Sci. Technol. 19 1
    [6]
    Liu M et al 2006 Eukaryot. Cell 5 1788
    [7]
    Campbell A K et al 2007 Arch. Biochem. Biophys. 468 107
    [8]
    Kanchiswamy C N et al 2014 Int. J. Mol. Sci. 15 3842
    [9]
    Petrou T et al 2017 J. Phamacol. Exp. Ther. 360 378
    [10]
    Magdalena K M and Renata Z T 2014 FEMS Yeast Res. 14 1068
    [11]
    Stout A K and Reynolds I J 1999 Neurosicence 89 91
    [12]
    Ying M H et al 2008 IEEE Trans. Plasma Sci. 36 1633
    [13]
    Miura Y et al 2014 Environ. Toxicol. Pharm. 37 563
    [14]
    Loughrey C M et al 2003 Cell Calcium 34 1
    [15]
    Zeng S W, Huang Q L and Zhao S M 2014 Food Control 46 360
    [16]
    Harkins A B, Kurebayashi N and Baylor S M 1993 Biophys. J. 65 865
    [17]
    Dong X Y et al 2016 J. Chem. Eng. Chin. Univ. 30 878 (in Chinese)
    [18]
    Jablonowski H and Woedtke T V 2015 Clini. Plasma Med. 3 42
    [19]
    Popa C V et al 2010 FEBS J. 277 4027
    [20]
    Bogeski I et al 2011 Cell Calcium 50 407
  • Related Articles

    [1]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [2]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [3]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [4]GAO Yu (高宇), WANG Yumin (王嵎民), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), QU Hao (屈浩), HAN Xiang (韩翔), WEN Fei (文斐), KONG Defeng (孔德峰), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), SUN Youwen (孙有文), LIANG Yunfeng (梁云峰), GAO Xiang (高翔), EAST Team. Preliminary Study of the Magnetic Perturbation Effects on the Edge Density Profiles and Fluctuations Using Reflectometers on EAST[J]. Plasma Science and Technology, 2016, 18(9): 879-883. DOI: 10.1088/1009-0630/18/9/01
    [5]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]LIU Chao(刘超), LIU Yue(刘悦), MA Zhaoshuai(马照帅). Effect of Equilibrium Current Profiles on External Kink Modes in Tokamaks[J]. Plasma Science and Technology, 2014, 16(8): 726-731. DOI: 10.1088/1009-0630/16/8/02
    [8]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [9]XU Chao (许超), OU Yongsheng (欧勇盛), Eugenio SCHUSTER, and YU Xin(于欣). Computing Open-Loop Optimal Control of the q-Profile in Ramp-Up Tokamak Plasmas Using the Minimal-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 403-410. DOI: 10.1088/1009-0630/15/5/02
    [10]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04

Catalog

    Article views (269) PDF downloads (522) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return