Advanced Search+
V M BARDAKOV, S D IVANOV, A V KAZANTSEV, N A STROKIN, A N STUPIN, Binhao JIANG (江滨浩), Zhenyu WANG (王振宇). Anomalous acceleration of ions in a plasma accelerator with an anodic layer[J]. Plasma Science and Technology, 2018, 20(3): 35501-035501. DOI: 10.1088/2058-6272/aa97cc
Citation: V M BARDAKOV, S D IVANOV, A V KAZANTSEV, N A STROKIN, A N STUPIN, Binhao JIANG (江滨浩), Zhenyu WANG (王振宇). Anomalous acceleration of ions in a plasma accelerator with an anodic layer[J]. Plasma Science and Technology, 2018, 20(3): 35501-035501. DOI: 10.1088/2058-6272/aa97cc

Anomalous acceleration of ions in a plasma accelerator with an anodic layer

Funds: This work was partly supported by a grant ‘Organization of the conduct of research’ code 82 of the Ministry of Education and Science of the Russian Federation.
More Information
  • Received Date: August 21, 2017
  • In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage Vd. The E×B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eVd (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eVd. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8×10–2BrA ≤ 4×10–2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.
  • [1]
    Plyutto A A 1960 Zh. Eksp. Teor. Fiz. 39 1589 (in Russian)
    [2]
    Plyutto A A et al 1967 J. Exp. Teor. Phys. Lett. 6 61
    [3]
    Korop E D and Plyutto A A 1970 Zh. Tekh. Fiz. 40 2534 (in Russian)
    [4]
    Luce J S, Sahlin H L and Crites T R 1973 IEEE Trans. Nucl. Sci. 20 336
    [5]
    Luce J S 1976 Collective-?eld acceleration of high-energy ions ed W H Bostick, V Nardi and O S F Zucker Energy Storage, Compression, and Switching (Boston, MA: Springer)
    [6]
    Dubinov A E, Kornilova I Y and Selemir V D 2002 Phys.– Usp. 45 1109
    [7]
    Belensov P E 2004 Phys. –Usp. 47 209
    [8]
    Barengolts S A, Mesyats G A and Perelshtein E A 2000 J. Exp. Theor. Phys. 91 1176
    [9]
    Barengolts S A et al 2005 Tech. Phys. Lett. 31 164
    [10]
    Barengolts S A, Mesyats G A and Perelshtein E A 2009 Tech. Phys. 54 1446
    [11]
    Adler R, Nation J A and Serlin V 1981 Phys. Fluids 24 347
    [12]
    Kondratenko A N and Kostenko V V 1989 Tech. Phys. 59 125 (in Russian)
    [13]
    Suladze K V 1972 J. Exp. Theor. Phys. Lett. 15 459
    [14]
    Goebel D M 2008 Hollow cathodes ed D M Goebel and I Katz Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Hoboken, NJ: Wiley)
    [15]
    Farnell C C, Williams J D and Farnell C C 2011 Plasma Sources Sci. Technol. 20 025006
    [16]
    Goebel D M, Jameson K, Katz I and Mikellides I G 2007 Phys. Plasmas 14 103508
    [17]
    Przybylowski J N, Polk J E and Shepherd J E 2009 Evidence for ion acceleration by oscillations in the discharge plasma of ion engines Proc. 36th IEEE Int. Conf. on Plasma Science (San Diego, USA) (IEEE)(https://doi.org/10.1109/ PLASMA.2009.5227732)
    [18]
    Sommers B S et al 2013 Preliminary characterization of ion energy spectra acquired from high current hollow cathodes Proc. 33rd Int. Electric Propulsion Conf. (Washington, DC, USA: George Washington University)
    [19]
    Thomas R E, Kamhawiy H and Williams G J Jr 2013 High current hollow cathode plasma plume measurements Proc. 33rd Int. Electric Propulsion Conf. (Washington, DC, USA: George Washington University)
    [20]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
    [21]
    Zhurin V V, Kaufman H R and Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1
    [22]
    Hagelaar G J M et al 2004 Contrib. Plasma Phys. 44 529
    [23]
    Huang W S, Drenkow B and Gallimore A D 2009 Laser-induced ?uorescence of singly-charged xenon inside a 6 kw Hall thruster Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibition (Denver, CO, USA) (AIAA)(https://doi.org/10.1063/1.3507308)
    [24]
    Huang W S, Gallimore A D and Smith T B 2011 Two-axis laser-induced ?uorescence of singly-charged xenon inside a 6 kw Hall thruster Proc. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Orlando, FL, USA) (AIAA)
    [25]
    Bourgeois G, Mazouffre S and Sadeghi N 2010 Phys. Plasmas 17 113502
    [26]
    Brown D L and Gallimore A D 2009 Investigation of low discharge voltage Hall thruster operating modes and ionization processes Proc. 31st Int. Electric Propulsion Conf. (Ann Arbor, MI USA) (University of Michigan)
    [27]
    Barkalov E E et al 2008 Instrum. Exp. Tech. 51 263
    [28]
    Gascon N 2000 Etude de propulseurs plasmiques à effet hall pour systèmes spatiaux. performances, propriétés des décharges et modélisation hydrodynamique PhD Thesis Université de Provence
    [29]
    Gibert T et al 2015 Contrib. Plasma Phys. 55 529
    [30]
    Bardakov V M, Kichigin G N and Strokin N A 2010 Tech. Phys. Lett. 36 185
    [31]
    Bardakov V M, Ivanov S D and Strokin N A 2014 Phys. Plasmas 21 033505
    [32]
    Bardakov V M et al 2015 Plasma Sci. Technol. 17 862
    [33]
    Bardakov V M et al 2016 Phys. Lett. A 380 3497
    [34]
    Tang B Y et al 1993 J. Appl. Phys. 73 4176
    [35]
    Zavilopulo A N, Chipev F F and Shpenik O B 2005 Tech. Phys. 50 402
    [36]
    Dorf L et al 2004 Appl. Phys. Lett. 84 1070
    [37]
    Raitses Y et al 2005 Phys. Plasmas 12 057104
    [38]
    Miljevi? V 1984 Rev. Sci. Instrum. 55 931
    [39]
    Anders A and Anders S 1995 Plasma Sources Sci. Technol. 4 571
    [40]
    Zharinov A V and Popov Y S 1967 Sov. Phys. Tech. Phys. 12 208
    [41]
    Bergeron K D 1976 Appl. Phys. Lett. 28 306
    [42]
    Vlasov M A, Zharinov A V and Kovalenko Y A 2001 Tech. Phys. 46 1522
    [43]
    Kovalenko A Y and Kovalenko Y A 2003 Tech. Phys. 48 1413
    [44]
    Garrigues L et al 2007 Two dimensional hybrid model of a miniaturized cylindrical Hall thruster Proc. 30th Int. Electric Propulsion Conf. (Florence, Italy) (IEPC)
    [45]
    Romadanov I et al 2016 Parametric studies of velocity distribution functions for Xenon ions and neutrals in cylindrical Hall thruster with laser-induced ?uorescence Proc. 52nd AIAA/SAE/ASEE Joint Propulsion Conf. (Salt Lake City, UT, USA) (AIAA)(https://doi.org/10.2514/ 6.2016-4622)
    [46]
    Bareilles J 2002 Modélisation 2D hybride d’un propulseur à effet hall pour satellites PhD Université Paul Sabatier de Toulouse, Toulouse
    [47]
    Dorf L, Raitses Y and Fisch N J 2006 Phys. Plasmas 13 057104
    [48]
    Plyutto A A 2005 Tech. Phys. 50 1145

Catalog

    Article views (257) PDF downloads (626) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return