Advanced Search+
Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
Citation: Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce

Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

Funds: The work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0304203), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT13076), National Natural Science Foundation of China (Nos. 61475093, 61378047, 61775125), the Shanxi ‘1331 Project’ Key Subjects Construction and the Major Special Science and Technology Projects in Shanxi Province (No. MD2016-01). The authors thank the State Key Lab of Power Systems for technical contribution and financial support.
More Information
  • Received Date: September 05, 2017
  • The chemical composition of alloys directly determines their mechanical behaviors and application fiields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.
  • [1]
    Li Y et al 2017 Plasma Sci. Technol. 19 025501
    [2]
    Wen G H et al 2014 Plasma Sci. Technol. 16 598
    [3]
    Yang J H et al 2015 Spectrochim. Acta B 107 45
    [4]
    Ferreira E C et al 2008 Spectrochim. Acta B 63 1216
    [5]
    Guo M Y et al 2016 Plasma Sci. Technol. 18 661
    [6]
    Ciucci A et al 1999 Appl. Spectrosc. 53 960
    [7]
    Davari S A et al 2017 J. Anal. At. Spectrom. 32 1378
    [8]
    Borgiaa I et al 2000 J. Cult. Heritage. 1 281
    [9]
    Tognoni E et al 2007 Spectrochim. Acta B 62 1287
    [10]
    Bulajic D et al 2002 Spectrochim. Acta B 57 339
    [11]
    Colao F et al 2004 J. Anal. At. Spectrom. 19 502
    [12]
    Bel’kov M V et al 2005 J. Appl. Spectrosc. 72 376
    [13]
    Fornarini L et al 2005 Spectrochim. Acta B 60 1186
    [14]
    Dell’Aglio M et al 2010 Geochim. Cosmochim. Acta 74 7329
    [15]
    Burakov V S and Raikov S N 2007 Spectrochim. Acta B 62 217
    [16]
    Kolmhofer P J et al 2015 Spectrochim. Acta B 106 67
    [17]
    Rifai K et al 2017 Spectrochim. Acta B 134 33
    [18]
    Gaudiuso R et al 2012 Spectrochim. Acta B 74–75 38
    [19]
    El Sherbini A M et al 2005 Spectrochim. Acta B 60 1573
    [20]
    Burakov V S et al 2004 J. Appl. Spectrosc. 71 740
    [21]
    De Giacomo A 2011 Spectrochim. Acta B 66 661
    [22]
    Capitelli M et al 2004 Spectrochim. Acta B 59 271
    [23]
    De Giacomo A et al 2012 Chem. Phys. 398 233
    [24]
    De Giacomo A et al 2008 Spectrochim. Acta B 63 805
  • Related Articles

    [1]H L SWAMI, M ABHANGI, Sanchit SHARMA, S TIWARI, A N MISTRY, V VASAVA, V MEHTA, S VALA, C DANANI, V CHAUDHARI, P CHAUDHURI. A neutronic experiment to support the design of an Indian TBM shield module for ITER[J]. Plasma Science and Technology, 2019, 21(6): 65601-065601. DOI: 10.1088/2058-6272/ab079a
    [2]Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599
    [3]Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592
    [4]Qingmei XIAO (肖青梅), Zhibin WANG (王志斌), Xiaogang WANG (王晓钢), Chijie XIAO (肖池阶), Xiaoyi YANG (杨肖易), Jinxing ZHENG (郑金星). Conceptual design of Dipole Research Experiment (DREX)[J]. Plasma Science and Technology, 2017, 19(3): 35301-035301. DOI: 10.1088/2058-6272/19/3/035301
    [5]GUO Bin (郭斌 ), SONG Zhiquan (宋执权 ), FU Peng (傅鹏 ), JIANG Li (蒋力 ), LI Jinchao (李金超), WANG Min (王敏), DONG Lin (董琳). Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar[J]. Plasma Science and Technology, 2016, 18(10): 1049-1054. DOI: 10.1088/1009-0630/18/10/14
    [6]HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13
    [7]LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07
    [8]LI Changzheng(李长征), HU Jiansheng(胡建生), CHEN Yue(陈跃), LIANG Yunfeng(梁云峰), LI Jiangang(李建刚), LI Jiahong(李加宏), WU Jinhua(吴金华), HAN Xiang(韩翔). First Results of Pellet Injection Experiments on EAST[J]. Plasma Science and Technology, 2014, 16(10): 913-918. DOI: 10.1088/1009-0630/16/10/03
    [9]CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05
    [10]JI Liangliang(吉亮亮), ZOU Shuai(邹帅), SHEN Mingrong(沈明荣), XIN Yu(辛煜). Radio Frequency Underwater Discharge Operation and Its Application to Congo Red Degradation[J]. Plasma Science and Technology, 2012, 14(2): 111-117. DOI: 10.1088/1009-0630/14/2/06
  • Cited by

    Periodical cited type(16)

    1. Liu, Z., Chen, M., Huang, H. et al. Investigation of thermodynamic properties in picosecond laser-produced plasmas on silicon. AIP Advances, 2023, 13(9): 095002. DOI:10.1063/5.0165693
    2. Bai, X., Hai, R., He, Z. et al. Quantitative analysis of tungsten in steel by one-point calibration laser-induced breakdown spectroscopy in vacuum. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106724
    3. Irvine, S., Andrews, H., Myhre, K. et al. Radiative transition probabilities of neutral and singly ionized rare earth elements (La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) estimated by laser-induced breakdown spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023. DOI:10.1016/j.jqsrt.2023.108486
    4. Kościelniak, P.. Calibration in Analytical Science: Methods and Procedures. Calibration in Analytical Science: Methods and Procedures, 2023. DOI:10.1002/9783527831111
    5. Martínez-Minchero, M., Cobo, A., Méndez-Vicente, A. et al. Comparison of Mg/Ca concentration series from Patella depressa limpet shells using CF-LIBS and LA-ICP-MS. Talanta, 2023. DOI:10.1016/j.talanta.2022.123757
    6. Hu, Z., Zhang, D., Wang, W. et al. A review of calibration-free laser-induced breakdown spectroscopy. TrAC - Trends in Analytical Chemistry, 2022. DOI:10.1016/j.trac.2022.116618
    7. Zhang, N., Ou, T., Wang, M. et al. A Brief Review of Calibration-Free Laser-Induced Breakdown Spectroscopy. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.887171
    8. Huang, B., Wang, X.-H., Jiang, P. Research on Detection of Cement Raw Material Content Based on Near-Infrared Spectroscopy | [基于近红外光谱检测技术的水泥生料成分含量检测研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(3): 737-742. DOI:10.3964/j.issn.1000-0593(2022)03-0737-06
    9. Liu, Z., Guo, C., Chen, L. et al. Thermodynamic equilibrium state analysis of silicon plasma induced by picosecond laser. Proceedings of SPIE - The International Society for Optical Engineering, 2022. DOI:10.1117/12.2616219
    10. Chen, L., Deng, H., Xiong, Z. et al. Investigation of shielding effects on picosecond laser-induced copper plasma characteristics under different focusing distances. Photonics, 2021, 8(12): 536. DOI:10.3390/photonics8120536
    11. Liu, Z., Zhao, G., Guo, C. et al. Spatially and temporally resolved evaluation of local thermodynamic equilibrium for laser-induced plasma in a high vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(11): 2362-2369. DOI:10.1039/d1ja00199j
    12. Han, L., Liu, F., Zhang, L. An improved sub-model plsr quantitative analysis method based on svm classifier for chemcam laser-induced breakdown spectroscopy. Symmetry, 2021, 13(2): 1-13. DOI:10.3390/sym13020319
    13. Qasim, M., Anwar-Ul-Haq, M., Sher Afgan, M. et al. Quantitative analysis of saindha salt using laser induced breakdown spectroscopy and cross-validation with ICP-MS. Plasma Science and Technology, 2020, 22(7): 074007. DOI:10.1088/2058-6272/ab7f3e
    14. Zhang, L.-H., Zhang, L., Wu, Z.-C. et al. Quantitative Modeling for Earth Sample's LIBS Spectra of Curiosity Rover Based on Inception Network | [基于Inception网络的好奇号火星车地面标样LIBS光谱定量建模]. Guangzi Xuebao/Acta Photonica Sinica, 2020, 49(6): 0630002. DOI:10.3788/gzxb20204906.0630002
    15. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    16. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (274) PDF downloads (569) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return