Advanced Search+
Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
Citation: Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8

Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

Funds: This work was partially supported by National Natural Science Foundation of China (Grant Nos. 11174147, 11175152 and 11704326), the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYLX15_0316) and the Fundamental Research Funds for the Central Universities.
More Information
  • Received Date: July 24, 2017
  • The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2)N/GaAs/(SiO2/Si)N/air is far higher than in asymmetric structure of air/(Si/SiO2)N/GaAs/(Si/SiO2)N/air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.
  • [1]
    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
    [2]
    John S 1987 Phys. Rev. Lett. 58 2486
    [3]
    Pipa V I, Liptuga A I and Morozhenko V 2013 J. Optics 15 075104
    [4]
    Maigyte L and Staliunas K 2015 Appl. Phys. Rev. 2 011102
    [5]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
    [6]
    Guo B, Peng L and Qiu X M 2013 Plasma Sci. Technol. 15 609
    [7]
    Zhang H F et al 2012 Phys. Plasmas 19 112102
    [8]
    Zhang H F et al 2013 J. Supercond. Nov. Magn. 26 77
    [9]
    Ding G W et al 2015 Physica B 468–469 1
    [10]
    Kong X K et al 2017 Opt. Commun. 383 391
    [11]
    Jamshidi-Ghaleh K and Moslemi F 2017 Appl. Opt. 56 4146
    [12]
    Abouti O E et al 2016 Phys. Plasmas 23 082115
    [13]
    Zhang H F, Liu S B and Yang H 2014 J. Supercond. Nov. Magn. 27 41
    [14]
    Zhang H F et al 2013 J. Supercond. Nov. Magn. 26 3391
    [15]
    HungH C, Wu CJ and Chang S J 2011 J. Appl. Phys. 110 093110
    [16]
    Yang J et al 2016 Sci. Rep. 6 38732
    [17]
    Chang T W, Chien J R and Wu C J 2016 Appl. Opt. 55 943
    [18]
    Feng Y C et al 2017 Plasmonics (https://doi.org/10.1007/ s11468-017-0557-6)
    [19]
    LiPNandLiuY W2009 Phys. Lett. A 373 1870
    [20]
    Wilson K S J and Navaneethakrishnan K 2005 Phys. Stat. Sol. 242 2515
    [21]
    Wang H and Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese)
  • Cited by

    Periodical cited type(16)

    1. Xu, A., Wan, X., Gan, P. et al. Study on the Influence of Pressure on Ion Extraction Characteristics. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3530562
    2. Wang, Y.-T., Luo, L.-Y., Li, H.-P. et al. Theoretical Analysis and Case Studies of One-Dimensional Ion Extraction Processes. Journal of Engineering Physics and Thermophysics, 2024, 97(6): 1641-1650. DOI:10.1007/s10891-024-03042-6
    3. Chen, J., Wang, Z. Excitation of ion acoustic solitary waves and shock waves in decaying plasma between biased parallel-plate electrodes. AIP Advances, 2024, 14(10): 105319. DOI:10.1063/5.0229844
    4. Xu, A., Gan, P., Wan, X. et al. Influence of ion species on extraction characteristics of mixed ion beams. Chinese Physics B, 2024, 33(9): 095202. DOI:10.1088/1674-1056/ad5c3d
    5. Majumder, A., Pulhani, A.K. Ion-collection characteristics of photoplasma for atomic vapor laser isotope separator module in electrostatic fields. Physics of Plasmas, 2024, 31(1): 013505. DOI:10.1063/5.0178441
    6. Sun, J.-Y., Chen, X., Zhao, K. et al. Particle simulations of ion-extraction process from a decaying plasma assisted by radio-frequency plasma heating. Plasma Sources Science and Technology, 2023, 32(12): 125009. DOI:10.1088/1361-6595/ad1014
    7. Wang, Y.-T., Sun, X.-L., Luo, L.-Y. et al. Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field. Chinese Physics B, 2023, 32(9): 095201. DOI:10.1088/1674-1056/ace033
    8. Singh, P., Sridhar, G., Maiti, N. Expansion of a finite-size photoplasma in an electrostatic field with M-type electrode configuration using a novel adaptive mesh 2D-PIC code. Current Applied Physics, 2023. DOI:10.1016/j.cap.2022.12.007
    9. Wang, Y.-T., Luo, L.-Y., Li, H.-P. et al. Non-equilibrium transport of charged particles in a wall-confined decaying plasma under an externally applied electric field | [外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(23): 232801. DOI:10.7498/aps.71.20221431
    10. Sun, H., Chen, J., Kaganovich, I.D. et al. Physical regimes of electrostatic wave-wave nonlinear interactions generated by an electron beam propagating in a background plasma. Physical Review E, 2022, 106(3): 035203. DOI:10.1103/PhysRevE.106.035203
    11. Wang, Y.-T., Chen, J., Li, H.-P. et al. Analysis and particle-in-cell simulation on the similarity relation during an ion extraction process. Journal of Physics: Conference Series, 2022, 2147(1): 012013. DOI:10.1088/1742-6596/2147/1/012013
    12. Yahya, K.A.. Enhancement of Electron Temperature under Dense Homogenous Plasma by Pulsed Laser Beam. Baghdad Science Journal, 2021, 18(4): 1344-1349. DOI:10.21123/BSJ.2021.18.4.1344
    13. Wang, Y.-T., Chen, J., Li, H.-P. et al. Modeling of the charged particle transport process in a decaying plasma with a Π-type electrode configuration. Japanese Journal of Applied Physics, 2021. DOI:10.35848/1347-4065/abb75c
    14. Chen, J., Li, J., Li, H. et al. Critical Value of the Electron Number Density for the Initial Electron Temperature Effect of the Ion Transport in a Decaying Plasma | [衰亡等离子体中产生离子输运初始电子温度效应的临界电子数密度判据]. Gaodianya Jishu/High Voltage Engineering, 2020, 46(2): 729-736. DOI:10.13336/j.1003-6520.hve.20200131042
    15. Mei, D., Fang, Z., Shao, T. Recent Progress on Characteristics and Applications of Atmospheric Pressure Low Temperature Plasmas | [大气压低温等离子体特性与应用研究现状]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(4): 1339-1358. DOI:10.13334/j.0258-8013.pcsee.191615
    16. Chen, J., Khrabrov, A.V., Wang, Y.-T. et al. Beam-assisted extraction of charged particles from a decaying plasma. Plasma Sources Science and Technology, 2020, 29(2): 025010. DOI:10.1088/1361-6595/ab5b5c

    Other cited types(0)

Catalog

    Article views (248) PDF downloads (611) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return