Advanced Search+
Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
Citation: Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31

Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 61378037), the Fundamental Research Funds for the Central Universities (Nos. 2013B33614, 2017B15214), the Research Funds of Innovation and Entrepreneurship Education Reform for Chinese Universities (No. 16CCJG01Z004), and the Changzhou Science and Technology Program (No. CJ20160027).
More Information
  • Received Date: July 27, 2017
  • The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa, the average electron temperature is about 1.7–2.1 eV and the average electron density is about 0.5×1017 – 3.6×1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
  • [1]
    Zhang Y C et al 2017 Phys. Plasmas 24 083511
    [2]
    He X et al 2016 Plasma Sci. Technol. 18 62
    [3]
    He X et al 2015 Plasma Sci. Technol. 17 869
    [4]
    Fletcher L B and Kritcher A L 2014 Phys. Rev. Lett. 112 145004
    [5]
    Shah M L et al 2015 European Physical Journal D 69 16
    [6]
    Gao R L et al 2016 Phys. Plasmas 23 083525
    [7]
    Doggett B et al 2005 Appl. Surf. Sci. 247 134
    [8]
    Godyak V A 1986 Soviet radio frequency discharge research Valery A, Delphic pp 28–52
    [9]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp 387–94
    [10]
    Bora B et al 2011 Phys. Plasmas 18 103509
    [11]
    Bora B et al 2013 Current Applied Physics 13 1448
    [12]
    Henault M et al 2016 Phys. Plasmas 23 023504
    [13]
    Cao M et al 2016 Japan. J. Appl. Phys. 55 096201
    [14]
    Wang Y T et al 2016 Chinese Journal of Vacuum Science and Technology 36 773 (in Chinese)
    [15]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press)
    [16]
    Li S Z et al 2006 Physics Letters A 360 304
    [17]
    Li S Z et al 2006 Phys. Plasmas 13 093503
    [18]
    Bora B et al 2012 Physics Letters A 376 1356
    [19]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasmas Discharges and Materials Processing 2nd edn (New York: Wiley)
    [20]
    Wu S et al 2016 IEEE Trans. Plasma Sci. 44 2632
    [21]
    Wu S et al 2013 Plasma Processes and Polymers 10 136
    [22]
    Zhang Y C et al 2014 IEEE Trans. Plasma Sci. 42 2253
    [23]
    Godyak V A, Piejak R B and Alexandrovich B M 1992 Plasma Sources Sci. Technol. 1 36
    [24]
    Mussenbrock T et al 2008 Phys. Rev. Lett. 101 085004
  • Related Articles

    [1]Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
    [2]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [3]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [4]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [5]A. SAEED, A. W. KHAN, M. SHAFIQ, F. JAN, M. ABRAR, M. ZAKA-UL-ISLAM, M. ZAKAULLAH. Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2014, 16(4): 324-328. DOI: 10.1088/1009-0630/16/4/05
    [6]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [7]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10
    [8]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.
    [9]ZHU Ximing (朱悉铭), PU Yikang (蒲以康). Determination of Non-Maxwellian Electron Energy Distributions in Low-Pressure Plasmas by Using the Optical Emission Spectroscopy and a Collisional-Radiative Model[J]. Plasma Science and Technology, 2011, 13(3): 267-278.
    [10]N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212.

Catalog

    Article views (386) PDF downloads (815) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return