Advanced Search+
Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
Citation: Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479

Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

Funds: This work is supported by the National Key R&D Program of China (2017YFB0902704) and the Science and Technology Project of SGCC (GY71-15-048).
More Information
  • Received Date: October 28, 2017
  • For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.
  • [1]
    Eager G S et al 1997 IEEE Trans. Power Deliv. 12 565
    [2]
    Bhimani B V 1961 IEEE Trans. Power Appar. Syst. 80 148
    [3]
    Miller R and Black I A 1977 IEEE Trans. Electr. Insul. 12 224
    [4]
    Miller R and Black I A 1979 IEEE Trans. Electr. Insul. 14 127
    [5]
    Illias H A, Chen G and Lewin P L 2011 IEEE Trans. Dielectr. Electr. Insul. 18 432
    [6]
    Bodega R et al 2004 IEEE Trans. Instrum. Meas. 53 251
    [7]
    Fynes-Clinton D and Nyamupangedengu C 2016 IEEE Trans. Electr. Insul. 32 15
    [8]
    Zhang S Q et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1076
    [9]
    Pan C et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 217
    [10]
    Li JH et al 2011 IEEE Trans. Power Deliv. 26 538
    [11]
    QiB,WeiZandLiCR 2016 IEEE Trans. Dielectr. Electr. Insul. 23 237
    [12]
    Luo Y et al 2014 IEEE Trans. Dielectr. Electr. Insul. 21 2237
    [13]
    Ran H J et al 2014 Plasma Sci. Technol. 16 465
    [14]
    Azooz A A and Waysi S I 2014 Plasma Sci. Technol. 16 211
    [15]
    Li M P et al 2017 Plasma Sci. Technol. 19 025401
    [16]
    Tang J et al 2002 High Voltage Eng. 28 4 (in Chinese)
    [17]
    Gulski E and Kreuger F H 1992 IEEE Trans. Electr. Insul. 27 82
    [18]
    Candela R, Mirelli G and Schifani R 2000 IEEE Trans. Dielectr. Electr. Insul. 7 87
    [19]
    Trinh N G 1995 IEEE Trans. Electr. Insul. 11 23
    [20]
    Liang X D, Zhou Y X and Zeng R 2015 High Voltage Engineering (Beijing: Tsinghua University Press)(in Chinese)
    [21]
    Liu Y P et al 2010 High Voltage Eng. 36 2424 (in Chinese)
    [22]
    Lu T B et al 2011 IEEE Trans. Magn. 47 1390
    [23]
    Florkowska B and Wlodek R 1993 IEEE Trans. Electr. Insul. 28 932
    [24]
    Chang J, Lawless P A and Yamamoto T 1991 IEEE Trans. Plasma Sci. 19 1152
    [25]
    Giao T N and Jordan J B 1970 J. Appl. Phys. 41 3991
  • Related Articles

    [1]Yue LI, Nan JIANG, Zhengyan LIU, Liang QIN, Bangfa PENG, Ronggang WANG, Yurong SUN, Jie LI. Efficient activation of the Co/SBA-15 catalyst by high-frequency AC-DBD plasma thermal effects for toluene removal[J]. Plasma Science and Technology, 2024, 26(8): 085502. DOI: 10.1088/2058-6272/ad47db
    [2]Ahmed Rida GALALY, Guido VAN OOST. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma[J]. Plasma Science and Technology, 2018, 20(8): 85504-085504. DOI: 10.1088/2058-6272/aac1b7
    [3]J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5
    [4]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [5]Emre SEKER, Mehmet Ali KILICARSLAN, Serdar POLAT, Emre OZKIR, Suat PAT. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?[J]. Plasma Science and Technology, 2016, 18(4): 417-423. DOI: 10.1088/1009-0630/18/4/15
    [6]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08
    [7]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [8]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [10]XIE Han, SONG Yuntao, YAO Damao, WANG Tingmei, YANG Lijun. Study on Solid Self-Lubricating Material for Plasma Facing Components in EAST[J]. Plasma Science and Technology, 2010, 12(6): 738-742.

Catalog

    Article views (216) PDF downloads (654) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return