Advanced Search+
Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
Citation: Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b

The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

Funds: This work was supported by National Natural Science Foundation of China under Grant No. 51707066 and by the Fundamental Research Funds for the Central Universities under Grant No. 2017 MS004 and No. XCA17003-04.
More Information
  • Received Date: October 17, 2017
  • The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
  • [1]
    Maruvada P S 2011 Corona in Transmission Systems: Theory, Design and Performance (Johannesburg: Eskom Holding)
    [2]
    Li X B et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1314
    [3]
    Khalifa M M et al 1969 IEEE Trans. Power Apparatus Syst. 88 1512
    [4]
    Li X B et al 2016 High Voltage 1 115
    [5]
    Li X B et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 870
    [6]
    Trichel G W 1938 Phys. Rev. 54 1078
    [7]
    Amin M R 1954 J. Appl. Phys. 25 210
    [8]
    Amin M R 1954 J. Appl. Phys. 25 358
    [9]
    Amin M R 1954 J. Appl. Phys. 25 627
    [10]
    Li Z et al 2014 Phys. Plasmas 21 012113
    [11]
    Yin H et al 2014 Phys. Plasmas 21 032116
    [12]
    Xu P F et al 2016 Phys. Plasmas 23 063511
    [13]
    Li X B et al 2016 Phys. Plasmas 23 123516
    [14]
    Liu Y et al 2014 Phys. Plasmas 21 082108
    [15]
    Liu Y et al 2015 Chin. Phys. B 24 065201
    [16]
    Sattari P et al 2011 J. Phys. D: Appl. Phys. 44 155502
    [17]
    Liu D X et al 2016 High Voltage 1 81
    [18]
    Yin H et al 2014 IEEE Trans. Magn. 50 473
    [19]
    Li X B et al 2016 Phys. Plasmas 23 033503
    [20]
    Liu Y et al 2015 IET Sci. Meas. Technol. 9 12
    [21]
    Lu T B et al 2011 IEEE Trans. Magn. 47 1390
    [22]
    Shockley W 1938 J. Appl. Phys. 9 635
    [23]
    Lama W L and Gallo C F 1974 J. Appl. Phys. 45 103
    [24]
    Liu Y P, Huang S L and Zhu L 2015 CSEE J. Power Energy Syst. 1 37
    [25]
    Bian X M et al 2010 IEEE Trans. Dielectr. Electr. Insul. 17 63
    [26]
    Phillips D B, Olsen R G and Pedrow P D 2000 IEEE Trans. Dielectr. Electr. Insul. 7 744
    [27]
    Zhou X X et al 2012 IEEE Trans. Power Deliv. 27 1574

Catalog

    Article views (208) PDF downloads (525) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return