Citation: | Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301 |
[1] |
Adamovich I et al 2017 J. Phys. D Appl. Phys. 50 323001
|
[2] |
Bak M S, Im S K and Cappelli M 2015 IEEE Trans. Plasma Sci. 43 1002
|
[3] |
Ozkan A, Bogaerts A and Reniers F 2017 J. Phys. D Appl. Phys. 50 084004
|
[4] |
Moss M S et al 2017 Plasma Sources Sci. Technol. 26 035009
|
[5] |
Snoeckx R and Bogaerts A 2017 Chem. Soc. Rev. 46 5805
|
[6] |
Pinh?o N et al 2016 Int. J. Hydrog. Energy 41 9245
|
[7] |
Nozaki T and Okazaki K 2013 Catal. Today 211 29
|
[8] |
Gonzalez-Aguilar J et al 2009 Energy Fuels 23 4931
|
[9] |
Rollier J D et al 2008 Energy Fuels 22 1888
|
[10] |
Snoeckx R et al 2017 Plasma Process. Polym. 14 e1600115
|
[11] |
Eliasson B, Liu C J and Kogelschatz U 2000 Ind. Eng. Chem. Res. 39 1221
|
[12] |
Al-Harrasi W S S, Zhang K and Akay G 2013 Green Process. Synth. 2 479
|
[13] |
Chen J H and Davidson J H 2002 Plasma Chem. Plasma Process. 22 495
|
[14] |
Malik M A et al 2015 Plasma Chem. Plasma Process. 35 697
|
[15] |
Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421
|
[16] |
Jarrige J and Vervisch P 2007 Plasma Chem. Plasma Process. 27 241
|
[17] |
Koeta O et al 2012 Plasma Chem. Plasma Process. 32 991
|
[18] |
Li Y Z et al 2014 Plasma Chem. Plasma Process. 34 801
|
[19] |
Lovascio S et al 2015 Plasma Chem. Plasma Process. 35 279
|
[20] |
Ogata A et al 2010 Plasma Chem. Plasma Process. 30 33
|
[21] |
Vandenbroucke A M et al 2011 J. Hazard. Mater. 195 30
|
[22] |
Castela M et al 2016 Combust. Flame 166 133
|
[23] |
Lietz A M and Kushner M J 2016 J. Phys. D Appl. Phys. 49 425204
|
[24] |
Meichsner J et al 2012 Nonthermal Plasma Chemistry and Physics (Boca Raton, FL: CRC Press)
|
[25] |
Bogaerts A et al 2017 Plasma Process. Polym. 14 e1600070
|
[26] |
Adamovich I V, Li T and Lempert W R 2015 Philos. Trans. A Math. Phys. Eng. Sci. 373 20140336
|
[27] |
Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
|
[28] |
Mok Y S and Nam I S 2002 Chem. Eng. J. 85 87
|
[29] |
Chang C L and Lin T S 2005 Plasma Chem. Plasma Process. 25 227
|
[30] |
Hsu D D and Graves D B 2003 J. Phys. D Appl. Phys. 36 2898
|
[31] |
Rosocha L A and Korzekwa R A 1999 Removal of volatile organic compounds (VOCs) by atmospheric-pressure dielectric-barrier and pulsed-corona electrical discharges Electrical Discharges for Environmental Purposes: Scienti?c Background and Applications ed E M van Veldhuizen (Huntington, NY: NOVA Science Publishers)
|
[32] |
J?gi I, Levoll E and Raud J 2016 Chem. Eng. J. 301 149
|
[33] |
Blin-Simiand N, Pasquiers S and Magne L 2016 J. Phys. D Appl. Phys. 49 195202
|
[34] |
Wang B W et al 2013 J. Energy Chem. 22 876
|
[35] |
Feng J Q 1999 J. Appl. Phys. 86 2412
|
[36] |
Moscosa-Santillan M et al 2008 J. Clean Prod. 16 198
|
[37] |
Moreau E 2007 J. Phys. D Appl. Phys. 40 605
|
[38] |
Villermaux J 1993 Génie de la Réaction Chimique 2nd edn (Paris: TEC & DOC)
|
[39] |
Levenspiel O 1999 Chemical Reaction Engineering 3rd edn (New York: Wiley)
|
[40] |
Levenspiel O 2012 Tracer Technology: Modeling the Flow of Fluids (New York: Springer)
|
[41] |
Perry R H, Green D W and Maloney J O 1934 Perry’s Chemical Engineers’ Handbook 7th edn (New York: McGraw-Hill)
|
[42] |
Yan K et al 2001 Plasma Chem. Plasma Process. 21 107
|
[43] |
Schiorlin M et al 2009 Environ. Sci. Technol. 43 9386
|
[44] |
Harling A M et al 2008 Environ. Sci. Technol. 42 4546
|
[45] |
Trambouze P 1993 Réacteurs chimiques—Technologie https://techniques-ingenieur.fr/base-documentaire/ procedes-chimie-bio-agro-th2/reacteurs-chimiques?42330210/reacteurs-chimiques-j4020/ J4020 v2 1–31
|
[46] |
Takaki K et al 2015 IEEE Trans. Plasma Sci. 43 3476
|
[47] |
Prantsidou M and Whitehead J C 2015 Plasma Chem. Plasma Process. 35 159
|
[48] |
Jiang N et al 2015 J. Phys. D Appl. Phys. 48 405205
|
[49] |
Gandhi M S et al 2013 J. Taiwan Inst. Chem. Eng. 44 786
|
[50] |
Delgado J M P Q 2006 Heat Mass Transf. 42 279
|
[1] | Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3 |
[2] | Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432 |
[3] | Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8 |
[4] | Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592 |
[5] | Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51 |
[6] | JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15 |
[7] | HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12 |
[8] | DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04 |
[9] | YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14 |
[10] | SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14 |
1. | Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013 |
2. | Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203 |
3. | Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450 |
4. | Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6 |
5. | Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148 |
6. | Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082 |
7. | Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935 |
8. | Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459 |
9. | Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612 |
10. |
Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
![]() |
11. | Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607 |
12. | Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818 |
13. | Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w |