Advanced Search+
Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
Citation: Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2

Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter

Funds: This work was supported by National Natural Science Foundation of China (Nos.11705022, 11505025, 11705023), Innovation and Entrepreneurship Plan of Dalian Nationalities University (school-level A?+?Nos. 201712026380).
More Information
  • Received Date: January 08, 2018
  • In this work, a two-dimensional numerical simulation of the discharge characteristics of helium plasma propagating inside a dielectric tube was performed. A trapezoidal +9 kV pulse lasting 400 ns was applied on a needle electrode set inside the dielectric tube to ignite the discharge. The discharges generated in the tubes with a variable or a constant inner diameter were investigated. The focus of this study was on clarifying the effect of the tube diameter on the discharge structure and dynamics. The comparison of the discharge characteristics generated in dielectric tubes with different diameters was carried out. It was shown that the tube diameter plays a significant role in discharge behavior of plasma propagating in the dielectric tube.
  • [1]
    Lu X et al 2016 Phys. Rep. 630 1
    [2]
    Demkin V P et al 2016 Phys. Plasmas 23 043509
    [3]
    Chen G L et al 2012 Chin. Phys. B 21 105201
    [4]
    Kim S J and Chung T H 2015 Appl. Phys. Lett. 107 063702
    [5]
    Lu X et al 2014 Phys. Rep. 540 123
    [6]
    J?gi I et al 2014 J. Phys. D: Appl. Phys. 47 415202
    [7]
    Talviste R et al 2016 J. Phys. D: Appl. Phys. 49 195201
    [8]
    Sohbatzadeh F and Omran A V 2014 Phys. Plasmas 21 113510
    [9]
    Gou J, Xian Y and Lu X 2016 Phys. Plasmas 23 053508
    [10]
    Wu S et al 2016 Phys. Plasmas 23 103506
    [11]
    Jánsky J et al 2010 J. Phys. D: Appl. Phys. 43 395201
    [12]
    Jansky J et al 2011 IEEE Trans. Plasma Sci. 39 2106
    [13]
    Jánsky J et al 2011 J. Phys. D: Appl. Phys. 44 335201
    [14]
    Yan W et al 2017 J. Phys. D: Appl. Phys. 50 345201
    [15]
    2017 COMSOL 5.0 (Burlington, MA: COMSOL) (https://cn. comsol.com/)
    [16]
    Oh J S, Walsh J L and Bradley J W 2012 Plasma Sources Sci. Technol. 21 034020
    [17]
    Karakas E, Akman M A and Laroussi M 2012 Plasma Sources Sci. Technol. 21 034016
    [18]
    Liu F C, Yan W and Wang D Z 2013 Acta Phys. Sin. 62 175204 (in Chinese)
    [19]
    Yan W et al 2015 Chin. Phys. B 24 065203
    [20]
    Liu X Y et al 2014 Plasma Sources Sci. Technol. 23 035007
    [21]
    Kulikovsky A A 1998 Phys. Rev. E 57 7066
    [22]
    Jánsky J and Bourdon A 2011 Eur. Phys. J. Appl. Phys. 55 13810
  • Cited by

    Periodical cited type(3)

    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Wang, Z.H., Zhang, B., Gong, X.Z. et al. Electron ITB formation in EAST high poloidal beta plasmas under dominant electron heating. Plasma Physics and Controlled Fusion, 2024, 66(6): 065002. DOI:10.1088/1361-6587/ad3c1a
    3. Gong, S.B., Zhang, T.C., Guo, W.P. et al. Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak. Journal of Instrumentation, 2023, 18(10): C10019. DOI:10.1088/1748-0221/18/10/C10019
    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Wang, Z.H., Zhang, B., Gong, X.Z. et al. Electron ITB formation in EAST high poloidal beta plasmas under dominant electron heating. Plasma Physics and Controlled Fusion, 2024, 66(6): 065002. DOI:10.1088/1361-6587/ad3c1a
    3. Gong, S.B., Zhang, T.C., Guo, W.P. et al. Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak. Journal of Instrumentation, 2023, 18(10): C10019. DOI:10.1088/1748-0221/18/10/C10019

    Other cited types(0)

Catalog

    Article views (233) PDF downloads (484) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return