Advanced Search+
Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
Citation: Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f

Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects

Funds: This work is supported by National Natural Science Foundation of China with Nos. 11305027, 11322549 and 11675038, National Magnetic Confinement Fusion Science Program of China with No. 2014GB124000 and partly supported by the Fundamental Research Funds for the Central Universities with Grant No. DUT15YQ103.
More Information
  • Received Date: December 05, 2017
  • Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic shear (EMS), and pressure flattening. It is shown that the magnetic island may enhance the Landau damping of the system by inducing the radial magnetic field. Moreover, the radial eigenmode numbers of most MITG poloidal harmonics are increased by the magnetic island so that the MITG mode is destabilized in the low EMS regime. In addition, the pressure profile flattening effect inside a magnetic island hardly affects the growth of the whole MITG mode, while it has different local effects near the O-point and the X-point regions. In comparison with the non-zero-order perturbations, only the quasi-linear flattening effect due to the zonal pressure is the effective component to impact the growth rate of the mode.
  • [1]
    Horton W 1999 Rev. Mod. Phys. 71 735
    [2]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35
    [3]
    Lee G S and Diamond P H 1986 Phys. Fluids 29 3291
    [4]
    Hammett G W et al 1993 Plasma Phys. Control. Fusion 35 973
    [5]
    Barnes M, Parra F I and Schekochihin A A 2011 Phys. Rev. Lett. 107 115003
    [6]
    Hill P, Hariri F and Ottaviani M 2015 Phys. Plasmas 22 042308
    [7]
    Lin Z et al 1998 Science 281 1835
    [8]
    Zhao N et al 2018 Plasma Sci. Technol. 20 024007
    [9]
    Dong C et al 2013 Phys. Plasmas 20 032512
    [10]
    Ren H J 2014 Phys. Plasmas 21 044505
    [11]
    Gong X Z et al 2017 Plasma Sci. Technol. 19 032001
    [12]
    Qian J P et al 2016 Plasma Sci. Technol. 18 457
    [13]
    Gao X et al 2015 Plasma Sci. Technol. 17 448
    [14]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459
    [15]
    Cai H S et al 2011 Phys. Rev. Lett. 106 075002
    [16]
    Wang H H et al 2015 Plasma Sci. Technol. 17 539
    [17]
    Chen W et al 2014 Europhys. Lett. 107 25001
    [18]
    Chen W et al 2016 Europhys. Lett. 116 45003
    [19]
    Wang X G and Bhattacharjee A 1997 Phys. Plasmas 4 748
    [20]
    Fitzpatrick R and Zanca P 2002 Phys. Plasmas 9 2707
    [21]
    Boozer A H 2005 Rev. Mod. Phys. 76 1071
    [22]
    Chang Z et al 1996 Phys. Rev. Lett. 77 3553
    [23]
    Wang Z X et al 2007 Phys. Rev. Lett. 99 185004
    [24]
    Wei L et al 2016 Nucl. Fusion 56 106015
    [25]
    Wang J L et al 2017 Nucl. Fusion 57 046007
    [26]
    Ida K et al 2012 Phys. Rev. Lett. 109 065001
    [27]
    Ida K et al 2015 Sci. Rep. 5 16165
    [28]
    Bardóczi L et al 2016 Phys. Plasmas 23 052507
    [29]
    Bardóczi L et al 2017 Phys. Plasmas 24 056106
    [30]
    Bardóczi L et al 2017 Phys. Plasmas 24 062503
    [31]
    Qu W X and Callen J D 1985 Nonlinear Growth of a Single Neoclassical MHD Tearing Mode in a Tokamak Report UWPR-85-5 United States University of Wisconsin
    [32]
    La Haye R J 2006 Phys. Plasmas 13 055501
    [33]
    Martin P et al 2003 Nucl. Fusion 43 1855
    [34]
    Frassinetti L et al 2008 Nucl. Fusion 48 045007
    [35]
    Militello F et al 2008 Phys. Plasmas 15 050701
    [36]
    Waelbroeck F L et al 2009 Plasma Phys. Control. Fusion 51 015015
    [37]
    Waelbroeck F L 2009 Nucl. Fusion 49 104025
    [38]
    Kikuchi M and Azumi M 2012 Rev. Mod. Phys. 84 1807
    [39]
    Inagaki S et al 2013 Nucl. Fusion 53 113006
    [40]
    Itoh S I, Itoh K and Yagi M 2003 Phys. Rev. Lett. 91 045003
    [41]
    Yagi M et al 2005 Nucl. Fusion 45 900
    [42]
    Ishizawa A and Nakajima N 2007 Nucl. Fusion 47 1540
    [43]
    Ishizawa A and Diamond P H 2010 Phys. Plasmas 17 074503
    [44]
    Zhao K J et al 2015 Nucl. Fusion 55 073022
    [45]
    McDevitt C J and Diamond P H 2006 Phys. Plasmas 13 032302
    [46]
    Wilson H R and Connor J W 2009 Plasma Phys. Control. Fusion 51 115007
    [47]
    Poli E, Bottino A and Peeters A G 2009 Nucl. Fusion 49 075010
    [48]
    Poli E et al 2010 Plasma Phys. Control. Fusion 52 124021
    [49]
    Hu Z Q et al 2014 Nucl. Fusion 54 123018
    [50]
    Hu Z Q et al 2016 Nucl. Fusion 56 016012
    [51]
    Hornsby W A et al 2010 Phys. Plasmas 17 092301
    [52]
    Hornsby W A et al 2011 Plasma Phys. Control. Fusion 53 054008
    [53]
    Muraglia M et al 2009 Nucl. Fusion 49 055016
    [54]
    Yu Q, Günter S and Scott B D 2003 Phys. Plasmas 10 797
    [55]
    Li J Q et al 2009 Nucl. Fusion 49 095007
    [56]
    Han M K et al 2017 Nucl. Fusion 57 046019
    [57]
    Wang Z X et al 2009 Phys. Plasmas 16 060703
    [58]
    Wang Z X et al 2009 Phys. Rev. Lett. 103 015004
    [59]
    Rutherford P H 1973 Phys. Fluids 16 1903
    [60]
    Li J Q and Kishimoto Y 2003 Phys. Plasmas 10 683
    [61]
    Hammett G W and Perkins F W 1990 Phys. Rev. Lett. 64 3019
    [62]
    Hamaguchi S and Horton W 1990 Phys. Fluids B 2 1833
    [63]
    Terry P W et al 1988 Phys. Fluids 31 2920
    [64]
    Yang J H et al 2009 Phys. Plasmas 16 092308
    [65]
    Li J et al 2008 Proc. 22nd Int. Conf. on Fusion Energy 2008 (Geneva, 2008) (Vienna: IAEA) CD-ROM file TH/P8-18
    [66]
    Liu Y et al 2004 Plasma Phys. Control. Fusion 46 455
    [67]
    Bonomo F et al 2009 Nucl. Fusion 49 045011
    [68]
    Lorenzini R et al 2009 Nat. Phys. 5 570
    [69]
    Li J et al 2010 Proc. 23rd Int. Conf. on Fusion Energy 2010 (Daejeon, 2010) (Vienna: IAEA) CD-ROM file THC/P4-169
  • Related Articles

    [1]Sunggeun LEE, Hankwon LIM. Landau damping of twisted waves in Cairns distribution with anisotropic temperature[J]. Plasma Science and Technology, 2021, 23(8): 85001-085001. DOI: 10.1088/2058-6272/ac01be
    [2]Bowen RUAN (阮博文), Zhoujun YANG (杨州军), Xiaoming PAN (潘晓明), Hao ZHOU (周豪), Fengqi CHANG (常风岐), Jing ZHOU (周静). Estimation of magnetic island width by the fluctuations of electron cyclotron emission radiometer on J-TEXT[J]. Plasma Science and Technology, 2019, 21(1): 15102-015102. DOI: 10.1088/2058-6272/aae382
    [3]LIANG Shaoyong (梁绍勇), XIAO Bingjia (肖炳甲), ZHANG Yang (张洋), WANG Linfang (王淋芳), YUAN Qiping (袁旗平), LUO Zhengping (罗正平), SHI Tonghui (石同辉), TI Ang (提昂). Real-Time Detection for Magnetic Island of Neoclassical Tearing Mode in EAST Plasma Control System[J]. Plasma Science and Technology, 2016, 18(2): 197-201. DOI: 10.1088/1009-0630/18/2/17
    [4]JIANG Peng (江澎), LIN Zhihong (林志宏), Ihor HOLOD, XIAO Chijie (肖池阶). The Implementation of Magnetic Islands in Gyrokinetic Toroidal Code[J]. Plasma Science and Technology, 2016, 18(2): 126-130. DOI: 10.1088/1009-0630/18/2/05
    [5]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [6]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [7]F. L. BRAGA. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus[J]. Plasma Science and Technology, 2013, 15(10): 985-988. DOI: 10.1088/1009-0630/15/10/05
    [8]QU Hongpeng (曲洪鹏). Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands[J]. Plasma Science and Technology, 2013, 15(9): 852-856. DOI: 10.1088/1009-0630/15/9/03
    [9]HAN Xiang (韩翔), LING Bili (凌必利), GAO Xiang (高翔), LIU Yong (刘永), TI Ang (提昂), LI Erzhong (李二众), XU Liqing (徐立清), WANG Yumin (王嵎民). Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 217-220. DOI: 10.1088/1009-0630/15/3/05
    [10]XU Hui (徐慧), SHENG Zhengming (盛政明). Critical Initial Amplitude of Langmuir Wave Damping[J]. Plasma Science and Technology, 2012, 14(3): 181-268. DOI: 10.1088/1009-0630/14/3/01

Catalog

    Article views (212) PDF downloads (314) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return