Advanced Search+
Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
Citation: Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c

Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 11675222).
More Information
  • Received Date: January 04, 2018
  • The dispersion relation of standard geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field is derived and analyzed. Both frequencies and damping rates increase with respect to the poloidal Mach number which indicates the strength of the radial electric field. The strength of anisotropy is denoted by the ratio of the parallel temperature to the perpendicular temperature It is shown that, when the parallel temperature is lower than the perpendicular temperature, the enhanced anisotropy tends to enlarge the real frequency but reduces the damping rate, and when the parallel temperature is higher than the perpendicular temperature, the effect is opposite. The radial equilibrium electric field has stronger effect on the frequency and damping rate for the case with higher parallel temperature than the case with higher perpendicular temperature.
  • [1]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35
    [2]
    Fujisawa A 2009 Nucl. Fusion 49 013001
    [3]
    Tynan G R, Fujisawa A and McKee G 2009 Plasma Phys. Control. Fusion 51 113001
    [4]
    Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
    [5]
    Zhou D 2015 Phys. Plasmas 22 092504
    [6]
    Zhou D 2016 Phys. Plasmas 23 102503
    [7]
    Wahlberg C 2008 Phys. Rev. Lett. 101 115003
    [8]
    Xie B Y, Guo W F and Xiang N 2017 Phys. Plasmas 24 052510
    [9]
    Itoh K, Hallatschek K and Itoh S I 2005 Plasma Phys. Control. Fusion 47 451
    [10]
    Chakrabarti N et al 2007 Phys. Plasmas 14 052308
    [11]
    Sasaki M et al 2009 Phys. Plasmas 16 022306
    [12]
    Silva C et al 2016 Nucl. Fusion 56 106026
    [13]
    Zwingmann W, Eriksson L G and Stubberfield P 2001 Plasma Phys. Control. Fusion 43 1441
    [14]
    Pustovitov V D 2010 Plasma Phys. Control. Fusion 52 065001
    [15]
    Ivanov A A et al 2015 Plasma Phys. Rep. 41 203
    [16]
    Ren H J 2015 Phys. Plasmas 22 072502
    [17]
    Evangelias A and Throumoulopoulos G N 2016 Plasma Phys. Control. Fusion 58 045022
    [18]
    Heidbrink W W and Sadler G J 1995 Nucl. Fusion 35 243
    [19]
    Nazikian R et al 2008 Phys. Rev. Lett. 101 185001
    [20]
    Fu G Y 2008 Phys. Rev. Lett. 101 185002
    [21]
    Berk H L and Zhou T 2010 Nucl. Fusion 50 035007
    [22]
    Qiu Z Y, Zonca F and Chen L 2010 Plasma Phys. Control. Fusion 52 095003
    [23]
    Sasaki M et al 2016 Phys. Plasmas 23 102501
    [24]
    Elfimov A G, Galv?o R M O and Sgalla R J F 2011 Plasma Phys. Control. Fusion 53 105003
    [25]
    Kurki-Suonio T, Lashkul S I and Heikkinen J A 2002 Plasma Phys. Control. Fusion 44 301
    [26]
    Zhou D 2010 Phys. Plasmas 17 102505
    [27]
    Lakhin V P and Ilgisonis V I 2011 Phys. Plasmas 18 092103
    [28]
    Catto P J, Tang W M and Baldwin D E 1981 Plasma Phys. 23 639
    [29]
    Gao Z et al 2006 Phys. Plasmas 13 100702
    [30]
    Kobayashi T et al 2014 Nucl. Fusion 54 073017
  • Related Articles

    [1]Yaoyu XIE (谢耀禹), Kaijun ZHAO (赵开君), Zhipeng CHEN (陈志鹏), Jiaqi DONG (董家齐), Kimitaka ITOH, Zhongyong CHEN (陈忠勇), Yuejiang SHI (石跃江), Yonghua DING (丁永华), Jun CHENG (程钧), Longwen YAN (严龙文), Hai LIU (刘海), Zhifeng CHENG (程芝峰), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Lu WANG (王璐), Jianqiang XU (许健强), Yunfeng LIANG (梁云峰), J-TEXT Team. Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105102. DOI: 10.1088/2058-6272/ac0ccd
    [2]Yemin HU (胡业民), M S ZHU (朱名盛), Wenfeng GUO (郭文峰). Numerical study of equilibrium solutions for axisymmetric plasmas with toroidal flow obtained using Solovev approach[J]. Plasma Science and Technology, 2019, 21(5): 55102-055102. DOI: 10.1088/2058-6272/ab004a
    [3]K J ZHAO (赵开君), J Q DONG (董家齐), J Q LI (李继全), LW YAN (严龙文). A brief review: experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94006-094006. DOI: 10.1088/2058-6272/aad382
    [4]Zhiyong QIU, Liu CHEN, Fulvio ZONCA. Kinetic theory of geodesic acoustic modes in toroidal plasmas: a brief review[J]. Plasma Science and Technology, 2018, 20(9): 94004-094004. DOI: 10.1088/2058-6272/aab4f0
    [5]M S CHU (朱名盛), Yemin HU (胡业民), Wenfeng GUO (郭文峰). Generalization of Solovev’s approach to finding equilibrium solutions for axisymmetric plasmas with flow[J]. Plasma Science and Technology, 2018, 20(3): 35101-035101. DOI: 10.1088/2058-6272/aa9841
    [6]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [7]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [8]LIU Chao(刘超), LIU Yue(刘悦), MA Zhaoshuai(马照帅). Effect of Equilibrium Current Profiles on External Kink Modes in Tokamaks[J]. Plasma Science and Technology, 2014, 16(8): 726-731. DOI: 10.1088/1009-0630/16/8/02
    [9]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.

Catalog

    Article views (191) PDF downloads (394) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return