Advanced Search+
Syed ZAHEERUDDIN, Yufan LI (李煜璠), Dongmei ZHAO (赵冬梅), Xinwen MA (马新文), Jie YANG (杨杰). The effect of the direct current electric field on the dynamics of the ultracold plasma[J]. Plasma Science and Technology, 2018, 20(8): 85001-085001. DOI: 10.1088/2058-6272/aac166
Citation: Syed ZAHEERUDDIN, Yufan LI (李煜璠), Dongmei ZHAO (赵冬梅), Xinwen MA (马新文), Jie YANG (杨杰). The effect of the direct current electric field on the dynamics of the ultracold plasma[J]. Plasma Science and Technology, 2018, 20(8): 85001-085001. DOI: 10.1088/2058-6272/aac166

The effect of the direct current electric field on the dynamics of the ultracold plasma

Funds: This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), National Natural Science Foundation of China (Grant No. 11404346), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030900).
More Information
  • Received Date: March 13, 2018
  • We created an ultracold plasma by photoionizing the laser-cooled and trapped rubidium atoms in a magneto-optical trap. In the externally applied direct current (DC) electric field environment, the electrons which escape from the potential well of the ultracold plasma were detected for different numbers of the ions and initial kinetic energies of the electrons. The results are in good agreement with the calculations, based on the Coulomb potential well model, indicating that the external DC field is an effective tool to adjust the depth of potential well of the plasma, and it is possible to create an ultracold plasma in a controlled manner.
  • [1]
    Metcalf H J and van der Straten P 2001 Laser Cooling and Trapping (New York: Springer)
    [2]
    Ichimuru S 1982 Rev. Mod. Phys. 54 1017
    [3]
    van Horn H M 1991 Science 252 384
    [4]
    Bathgate S N, Bilek M M M and Mckenzie D R 2017 Plasma Sci. Technol. 19 083001
    [5]
    Rischke D H 2004 Prog. Part. Nucl. Phys. 52 197
    [6]
    Yin H, Efaaf M J and Zhang W 2012 Plasma Sci. Technol. 14 445
    [7]
    Bourdel T et al 2004 Phys. Rev. Lett. 93 050401
    [8]
    Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
    [9]
    Kriesel J M et al 2002 Phys. Rev. Lett. 88 125003
    [10]
    Liu B and Goree J 2008 Phys. Rev. Lett. 100 055003
    [11]
    Hong Y et al 2017 Plasma Sci. Technol. 19 055301
    [12]
    Murillo M S J 2009 Phys. A: Math. Theor. 42 214054
    [13]
    Killian T C et al 1999 Phys. Rev. Lett. 83 4776
    [14]
    Robinson M P et al 2000 Phys. Rev. Lett. 85 4466
    [15]
    Pohl T, Pattard T and Rost J M 2003 Phys. Rev. A 68 010703
    [16]
    Kulin S et al 2000 Phys. Rev. Lett. 85 318
    [17]
    Killian T C et al 2001 Phys. Rev. Lett. 86 3759
    [18]
    Fletcher R S, Zhang X L and Rolston S L 2007 Phys. Rev. Lett. 99 145001
    [19]
    Simien C E et al 2004 Phys. Rev. Lett. 92 143001
    [20]
    Cummings E A et al 2005 Phys. Rev. Lett. 95 235001
    [21]
    Mazevet S, Collins L A and Kress J D 2002 Phys. Rev. Lett. 88 055001
    [22]
    Robicheaux F and Hanson J D 2002 Phys. Rev. Lett. 88 055002
    [23]
    Kuzmin S G and O’Neil T M 2002 Phys. Rev. Lett. 88 065003
    [24]
    Pohl T, Pattard T and Rost J M 2004 Phys. Rev. A 70 033416
    [25]
    Niffenegger K, Gilmore K A and Robicheaux F 2011 J. Phys. B: At. Mol. Opt. Phys. 44 145701
    [26]
    Jinbo L et al 2014 Plasma Sci. Technol. 16 305
    [27]
    Killian T C et al 2007 Phys. Rep. 449 77
    [28]
    Lyon M and Rolston S L 2017 Rep. Prog. Phys. 80 017001
    [29]
    Roberts J L et al 2004 Phys. Rev. Lett. 92 253003
    [30]
    Comparat D et al 2005 Mon. Not. R. Astron. Soc. 361 1227
    [31]
    Rezende D C J et al 2006 Laser Phys. 16 1706
    [32]
    Wilson T, Chen W T and Roberts J 2013 Phys. Plasma 20 073503
    [33]
    Li Y et al 2018 J. Phys. Soc. Japan 87 054301
    [34]
    Rolston S L 2008 Physics 1 2
    [35]
    Vanhaecke N et al 2005 Phys. Rev. A 71 013416
  • Related Articles

    [1]Yaroslav MURZAEV, Gennadii LIZIAKIN, Andrey GAVRIKOV, Rinat TIMIRKHANOV, Valentin SMIRNOV. A comparison of emissive and cold floating probe techniques for electric potential measurements in rf inductive discharge[J]. Plasma Science and Technology, 2019, 21(4): 45401-045401. DOI: 10.1088/2058-6272/aaf250
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Jianquan LI (李建泉), Wenqi LU (陆文琪), Jun XU (徐军), Fei GAO (高飞), Younian WANG (王友年). Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements[J]. Plasma Science and Technology, 2018, 20(2): 24002-024002. DOI: 10.1088/2058-6272/aa97cd
    [4]ZHANG Pengfei(张鹏飞), ZHANG Guogang(张国钢), DONG Jinlong(董金龙), LIU Wanying(刘婉莹), GENG Yingsan(耿英三). Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. DOI: 10.1088/1009-0630/16/7/06
    [5]LIU Jinbo(刘金波), LU Ronghua(陆荣华), GUO Li(郭丽), JIN Yuqi(金玉奇), GUO Jingwei(郭敬为). Long Lifetime Ultracold Plasma Produced by a Nanosecond Laser in a Supersonic Nitric Oxide Molecular Beam Environment[J]. Plasma Science and Technology, 2014, 16(4): 305-310. DOI: 10.1088/1009-0630/16/4/01
    [6]F. L. BRAGA. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus[J]. Plasma Science and Technology, 2013, 15(10): 985-988. DOI: 10.1088/1009-0630/15/10/05
    [7]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [8]Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15
    [9]XU Yongli (徐永丽), LIANG Haiying (梁海英), GUO Hairui (郭海瑞), HAN Yinlu (韩银录), SHEN Qingbiao (申庆彪). The Nucleon-Actinide Global Optical Model Potential Below 300 MeV[J]. Plasma Science and Technology, 2012, 14(6): 499-505. DOI: 10.1088/1009-0630/14/6/14
    [10]JIA Huiming(贾会明), LIN Chengjian(林承键), ZHANG Huanqiao(张焕乔), LIU Zuhua(刘祖华), YU Ning(喻宁), YANG Feng(杨峰), XU Xinxing(徐新星), JIA Fei(贾飞), WU Zhendong(吴振东), ZHANG Shitao(张世涛). Breakup Effect of Weakly Bound Projectile on the Barrier distribution around Coulomb Barrier[J]. Plasma Science and Technology, 2012, 14(5): 390-392. DOI: 10.1088/1009-0630/14/5/10

Catalog

    Article views (215) PDF downloads (474) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return