Advanced Search+
Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
Citation: Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0

Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing

Funds: This work was supported by Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX16_0310) and the Fundamental Research Funds for the Central Universities (No. NP2016406). This work was also supported by Graduate Innovation Center in NUAA (No. kfjj20170117). The authors would also like to thank China Postdoctoral Science Foun- dation (No. 2017M610325).
More Information
  • Received Date: December 14, 2017
  • Abstract Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model’s aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16°. However, significant changes can be achieved with actuation when the model’s angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.
  • [1]
    Sidorenko A A et al 2007 Pulsed discharge actuators for rectangular wing separation control 45th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno, Nevada: AIAA) AIAA paper 2007-941
    [2]
    Jolibois J, Forte M and Moreau é 2008 J. Electrostat. 66 496
    [3]
    Li Y, Zhang X and Huang X 2010 Exp. Fluids 49 367
    [4]
    Greenblatt D and Wygnanski I J 2000 Prog. Aerosp. Sci. 36 487
    [5]
    K?lzsch A and Breitsamter C 2014 J. Aircr. 51 1380
    [6]
    Sidorenko A A et al 2013 Exp. Fluids 54 1585
    [7]
    Gursul I, Wang Z and Vardaki E 2007 Prog. Aerosp. Sci. 43 246
    [8]
    Buzica A, Bartasevicius J and Breitsamter C 2017 Exp. Fluids 58 131
    [9]
    Wang J J et al 2013 Prog. Aerosp. Sci. 62 52
    [10]
    Moreau E 2007 J. Phys. D Appl. Phys. 40 605
    [11]
    Roth J R and Dai X 2006 Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device 44th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno, Nevada: AIAA) AIAA paper 2006-1203
    [12]
    Enloe C L et al 2004 AIAA J. 42 589
    [13]
    Dong B et al 2008 J. Phys. D: Appl. Phys. 41 155201
    [14]
    Shi Z W and Fan B G 2011 Acta Aeronaut. Astronaut. Sin. 32 1583 (in Chinese)
    [15]
    Du H et al 2012 Acta Aeronaut. Astronaut. Sinica 33 1781 (in Chinese)
    [16]
    Wu Y et al 2012 Chin. Phys. B 21 045202
    [17]
    Roupassov D V et al 2009 AIAA J. 47 168
    [18]
    Li Y et al 2010 Chin. Sci. Bull. 55 3060 (in Chinese)
    [19]
    Starikovskii A Y et al 2009 Plasma Sources Sci. Technol. 18 034015
    [20]
    Zhao G Y et al 2015 Exp. Fluids 56 1864
    [21]
    Han M H et al 2015 Chin. J. Aeronaut. 28 377
    [22]
    Han M H et al 2015 Plasma Sci. Technol. 17 502
    [23]
    Bisek N J et al 2012 Computational and experimental analysis of mach 5 air flow over a cylinder with a nanosecond pulse discharge 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings (Nashville, Tennessee: AIAA) AIAA paper 2012-1086
    [24]
    Adamovich I V et al 2012 Nanosecond pulse surface discharges for high-speed flow control 6th AIAA Flow Control Conf., Fluid Dynamics and Co-located Conf. (New Orleans, Louisiana: AIAA) AIAA paper 2012-3137
    [25]
    Du H et al 2016 Appl. Phys. Lett. 108 244105
    [26]
    Yao J K et al 2017 Plasma Sci. Technol. 19 044002
    [27]
    Du H et al 2016 Exp. Therm. Fluid Sci. 74 110
  • Related Articles

    [1]Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326
    [2]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [3]Zhijun WANG (王智君), Xiang GAO (高翔), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Fan ZHOU (周凡), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), EAST Team. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(2): 25103-025103. DOI: 10.1088/2058-6272/aa9477
    [4]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [5]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [6]PAN Xiayun (潘夏云), WANG Fudi (王福地), ZHANG Xinjun (张新军), LYU Bo (吕波), CHEN Jun (陈俊), LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), YU Yi (余羿), YE Minyou (叶民友), WAN Baonian (万宝年). Observation of Central Toroidal Rotation Induced by ICRF on EAST[J]. Plasma Science and Technology, 2016, 18(2): 114-119. DOI: 10.1088/1009-0630/18/2/03
    [7]PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), DU Tengfei (杜腾飞), HU Zhimeng (胡志猛), GE Lijian (葛理健), CHEN Jinxiang (陈金象), LI Xiangqing (李湘庆), FAN Tieshuan (樊铁栓). Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(1): 23-29. DOI: 10.1088/1009-0630/18/1/05
    [8]FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03
    [9]XU Ming, XU Xiaoyuan, WEN Yizhi, MA Jinxiu, XIE Jinlin, GAO Bingxi, LAN Tao, LIU Adi, YU Yi, HE Yinghua, WAN Baonian, HU Liqun, GAO Xiang. Electron Cyclotron Emission Imaging on the EAST Tokamak[J]. Plasma Science and Technology, 2011, 13(2): 167-171.
    [10]LUO Zhengping, XIAO Bingjia, J. A. LEUER, M. L. WALKER, YUAN Qiping. Eddy Calculation and Vacuum Field Reconstruction on EAST[J]. Plasma Science and Technology, 2011, 13(2): 145-152.
  • Cited by

    Periodical cited type(7)

    1. Li, Z., Ye, Y., Kong, D. et al. Detecting and tracking high-velocity plasmoids produced by a magnetized coaxial plasma gun in visible images. Review of Scientific Instruments, 2024, 95(12): 123506. DOI:10.1063/5.0230459
    2. Shen, Y.-C., Niu, Y.-F., Kong, D.-F. et al. Development and Performance Test of a Seya-Namioka Vacuum Ultraviolet Spectroscopy System | [Seya-Namioka 类型真空紫外光谱系统的研制和性能测试]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(8): 2158-2165. DOI:10.3964/j.issn.1000-0593(2024)08-2158-08
    3. Tan, M., Ye, Y., Kong, D. et al. Design and operation of a repetitive compact torus injector for the EAST tokamak. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114559
    4. Shen, Y., Niu, Y., Kong, D. et al. Vacuum-Ultraviolet spectrometer system for impurity emission measurement on a Compact Torus Injection System of EAST. Journal of Instrumentation, 2024, 19(5): P05075. DOI:10.1088/1748-0221/19/05/P05075
    5. Meng, F.-W., Zhang, X.-H., Hu, G.-H. et al. Development of a lanthanum hexaboride plasma source in EAST-CTI test platform | [EAST-CTI 测试平台上六硼化镧等离子体源的研制]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(1): 24-29. DOI:10.16568/j.0254-6086.202401005
    6. Liu, S., Xu, T., Liu, K.-Q. et al. Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure | [静态气压下平行轨道加速器电流分布与等离子体速度特性]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(19): 195202. DOI:10.7498/aps.72.20231007
    7. Wang, D., Qin, J., Zhang, Z. et al. Design and simulation of 1.5 T conduction-cooled superconducting magnet with flip-over capability. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113845
    1. Li, Z., Ye, Y., Kong, D. et al. Detecting and tracking high-velocity plasmoids produced by a magnetized coaxial plasma gun in visible images. Review of Scientific Instruments, 2024, 95(12): 123506. DOI:10.1063/5.0230459
    2. Shen, Y.-C., Niu, Y.-F., Kong, D.-F. et al. Development and Performance Test of a Seya-Namioka Vacuum Ultraviolet Spectroscopy System | [Seya-Namioka 类型真空紫外光谱系统的研制和性能测试]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(8): 2158-2165. DOI:10.3964/j.issn.1000-0593(2024)08-2158-08
    3. Tan, M., Ye, Y., Kong, D. et al. Design and operation of a repetitive compact torus injector for the EAST tokamak. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114559
    4. Shen, Y., Niu, Y., Kong, D. et al. Vacuum-Ultraviolet spectrometer system for impurity emission measurement on a Compact Torus Injection System of EAST. Journal of Instrumentation, 2024, 19(5): P05075. DOI:10.1088/1748-0221/19/05/P05075
    5. Meng, F.-W., Zhang, X.-H., Hu, G.-H. et al. Development of a lanthanum hexaboride plasma source in EAST-CTI test platform | [EAST-CTI 测试平台上六硼化镧等离子体源的研制]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(1): 24-29. DOI:10.16568/j.0254-6086.202401005
    6. Liu, S., Xu, T., Liu, K.-Q. et al. Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure | [静态气压下平行轨道加速器电流分布与等离子体速度特性]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(19): 195202. DOI:10.7498/aps.72.20231007
    7. Wang, D., Qin, J., Zhang, Z. et al. Design and simulation of 1.5 T conduction-cooled superconducting magnet with flip-over capability. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113845

    Other cited types(0)

Catalog

    Article views (162) PDF downloads (416) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return