Advanced Search+
Jian YANG (杨健), Ruiyang XU (许睿飏), Angjian WU (吴昂键), Xiaodong LI (李晓东), Li LI (李澧), Wangjun SHEN (沈望俊), Jianhua YAN (严建华). Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(12): 125503. DOI: 10.1088/2058-6272/aacda4
Citation: Jian YANG (杨健), Ruiyang XU (许睿飏), Angjian WU (吴昂键), Xiaodong LI (李晓东), Li LI (李澧), Wangjun SHEN (沈望俊), Jianhua YAN (严建华). Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(12): 125503. DOI: 10.1088/2058-6272/aacda4

Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition

Funds: This work was supported by National Natural Science Foundation of China (No. 51576174) and China Postdoctoral Science Foundation Funded Project (No. 2018M630672).
More Information
  • Received Date: April 22, 2018
  • One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties of the ICPECVD process were revealed via electrical diagnosis and optical emission spectroscopy. The coil current and voltage increased linearly with the augmenting of injected power, and CH, C2, H2 and H were detected at a wavelength from 300 to 700 nm, implying the generation of abundant graphene-building species. The morphology and structure of solid carbon products, graphene nanosheets, were systemically characterized in terms of the variations of operating conditions, such as pressure, temperature, gas proportion, etc. The results indicated that an appropriate operating condition was indispensable for the growth process of graphene nanosheets. In the present work, the optimized result was achieved at the pressure, heating temperature, applied power and gas proportion of 600mTorr, 800 °C, 500 W and 20:20:15, respectively, and the augmenting of both CH4 and H2 concentrations had a positive effect on the etching of amorphous carbon. Additionally, H2 and C2 hydrocarbons were detected as the main exhaust gases. The selectivity of H2 and C2H2, measured in exhaust gases, reached up to 52% and 8%, respectively, which implied a process of free radical reactions and electron collision dissociation. Based on a comprehensive investigation of spectral and electrical parameters and synthesized products, the reaction mechanism of collision, dissociation, diffusion, etc, in ICPECVD could be speculated, providing a probable guide for experimental and industrial applications.
  • [1]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl. Phys. 38 1
    [2]
    Seo H et al 2015 Sci. Rep. 5 16710
    [3]
    Seo D et al 2013 Carbon 60 221
    [4]
    Wu A et al 2017 Nanomaterials 7 318
    [5]
    Bazaka K, Jacob M V and Ostrikov K 2016 Chem. Rev. 116 163
    [6]
    Godyak V A 2011 Plasma Sources Sci. Technol. 20 1959
    [7]
    Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525
    [8]
    Yang J et al 2017 Plasma Sci. Technol. 19 115402
    [9]
    Alan M C et al 1999 J. Phys. Chem. B 103 6484
    [10]
    Kong J et al 1998 Nature 395 878
    [11]
    Piejak R B, Godyak V A and Alxandrovich B M 1992 Plasma Sources Sci. Technol. 1 179
    [12]
    Sunny C et al 2015 Carbon 93 393
    [13]
    Ashik U P M et al 2015 Renewable and Sustainable Energy Reviews 44 221
    [14]
    Wu A J et al 2014 Int. J. Hydrog. Energy 29 17656
    [15]
    Huang X et al 2011 Small 7 1876
    [16]
    Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
    [17]
    Lee C et al 2008 Science 321 385
    [18]
    Seo D H, Kumar S and Ostrikov K 2011 Carbon 49 4331
    [19]
    Chongyin Y et al 2013 J. Mater. Chem. A 1 770
    [20]
    Cui L et al 2015 Appl. Surf. Sci. 357 1
    [21]
    Rao B P C et al 2009 Fullerenes, Nanotubes and Carbon Nanostructures 17 625
    [22]
    Zhang L et al 2011 Nano Res. 4 315
    [23]
    Wei D et al 2013 Angew. Chem. Int. Ed. 52 14121
    [24]
    Kim Y S et al 2014 Nanoscale 6 10100
    [25]
    Wu A et al 2017 Applied Energy 195 67
    [26]
    Hao Z et al 2014 Int. J. Hydrogen Energy 39 12620
    [27]
    Sarkar D K, Farzaneh M and Paynter R W 2010 Appl. Surf. Sci. 256 3698
    [28]
    Zheng B et al 2013 Nanoscale 5 5180
    [29]
    Obraztsov A N et al 2003 Diam. Relat. Mater. 12 917
    [30]
    Vizireanu S et al 2010 Plasma Sources Sci. Technol. 19 034016
    [31]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)
    [32]
    Park S et al 2015 Plasma Sources Sci. Technol. 24 3
    [33]
    Suriani A B, Md Nor R and Rusop M 2010 J. Ceram. Soc. Japan 118 963
    [34]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [35]
    Khan A W et al 2013 Cur. Appl. Phys. 13 1241
    [36]
    Stewart R S and Smith D J 2002 J. Phys. D: Appl. Phys. 35 1777
    [37]
    Brezmes A O and Breitkopf C 2014 Vacuum 109 52
    [38]
    Brezmes A O and Breitkopf C 2015 Vacuum 116 65
  • Related Articles

    [1]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [2]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [3]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [4]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [5]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [6]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [7]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [10]ZHANG Hong(张虹), JI Tianyi(纪天一), ZHANG Renxi(张仁熙), HOU Huiqi(侯惠奇). Destruction of H2S gas with a Combined Plasma Photolysis (CPP) reactor[J]. Plasma Science and Technology, 2012, 14(2): 134-139. DOI: 10.1088/1009-0630/14/2/10

Catalog

    Article views (181) PDF downloads (159) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return