Advanced Search+
Haifeng ZHANG (章海锋), Hao ZHANG (张浩). The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents[J]. Plasma Science and Technology, 2018, 20(10): 105001. DOI: 10.1088/2058-6272/aacf87
Citation: Haifeng ZHANG (章海锋), Hao ZHANG (张浩). The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents[J]. Plasma Science and Technology, 2018, 20(10): 105001. DOI: 10.1088/2058-6272/aacf87

The features of band structures for woodpile three-dimensional photonic crystals with plasma and function dielectric constituents

Funds: This paper was funded by the Postdoctoral Foundation of Jiangsu Province (No. 1501016A), China Postdoctoral Science Foundation (No. 2015M581790), and the Special Grade China Postdoctoral Science Foundation (No. 2016T90455).
More Information
  • Received Date: April 08, 2018
  • The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theoretically studied by a modified plane wave expansion method, and the formulas for computing the band structures are derived. The arrangement for the proposed FPPCs is that the function dielectric columns are surrounded by plasma, and the embedded dielectric columns are stacked according to the woodpile lattices, which are arrayed with face- centered-tetragonal symmetry. The relative permittivity of function dielectric rods depends on the function coefficient and space coordinates. The relationships between the parameters for inserted function dielectric rods and plasma and the band structures are also investigated. The computed results illustrate that the obtained PBG can be tuned by those parameters as mentioned above. Compared to dielectric–air PCs, function dielectric PCs and plasma dielectric PCs with the same topology, a wider bandwidth of the photonic band gap can be observed in the proposed FPPCs. The calculated results also show us another alternative way to realize reconfigurable applications with 3D FPPCs.
  • [1]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
    [2]
    Joannopoulos J J, Meade R D and Winn J N 1995 Photonic Crystals: Molding the Flow of Light (Princeton, NJ: Princeton University Press)
    [3]
    Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (Oxford: Pergamon)
    [4]
    Qi L et al 2010 Phys. Plasmas 17 042501
    [5]
    Li C et al 2011 IEEE Trans. Plasma Sci. 39 1969
    [6]
    Kong X et al 2010 Phys. Plasmas 17 103506
    [7]
    Tan H et al 2018 IEEE Trans. Plasma Sci. 46 539
    [8]
    Qi L M et al 2018 Opt. Commun. 410 431
    [9]
    Zhang H F 2018 AIP Adv. 8 015304
    [10]
    Guo B 2009 Phys. Plasmas 16 043508
    [11]
    Qi L 2012 J. Appl. Phys. 111 073301
    [12]
    Shiveshwari L and Mahto P 2006 Solid State Commun. 138 160
    [13]
    Dehnavi Z N et al 2017 Phys. Plasmas 24 093517
    [14]
    Shiveshwari L 2011 Optik 122 1523
    [15]
    Qi L, Yang Z and Fu T 2012 Phys. Plasmas 19 012509
    [16]
    Arafa Aly H et al 2017 Int. J. Mod. Phys. B 31 1750239
    [17]
    Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001
    [18]
    Ardakani A G 2014 J. Opt. Soc. Am. B 31 332
    [19]
    Mehdian H, Mohammadzahery Z and Hasanbeigi A 2014 Phys. Plasmas 21 012101
    [20]
    Mei Y, Zhu J and Mei H 2016 Opt. Quantum Electron. 48 244
    [21]
    Zhang H F, Liu S B and Kong X K 2013 J. Lightwave Technol. 31 1694
    [22]
    Zhang H F et al 2013 Opt. Commun. 288 82
    [23]
    Kopperschmidt P 2003 Appl. Phys. B 76 729
    [24]
    Fan S H, Villeneuve P R and Joannopoulos J D 1995 J. Appl. Phys. 78 1415
    [25]
    Ho K M et al 1994 Solid State Commun. 89 413
    [26]
    Khalkhali T F, Rezaei B and Kalafi M 2011 Opt. Commun. 284 3315
    [27]
    Wang D D et al 2005 Appl. Phys. B 81 465
    [28]
    Maksymov I S et al 2005 Opt. Commun. 248 469
    [29]
    Jafari D et al 2018 Opt. Laser Technol. 101 138
    [30]
    Youssefi B, Moravvej-Farshi M K and Granpayeh N 2012 Opt. Commun. 285 3228
    [31]
    Zhang H F 2017 Physica B 525 104
    [32]
    Liu X J et al 2017 Physica E 85 227
    [33]
    Wu X Y et al 2013 Physica E 53 1
    [34]
    Dobson D C, Gopalakrishnan J and Pasciak J E 2000 J. Comput. Phys. 161 668
    [35]
    Zhang H F et al 2015 Phys. Plasmas 22 022105
    [36]
    Ho K M, Chan C T and Soukoulis C M 1990 Phys. Rev. Lett. 65 3152
    [37]
    Li L F 1996 J. Opt. Soc. Am. A 13 1870
    [38]
    S?züer H S and Haus J W 1993 J. Opt. Soc. Am. B 10 296
    [39]
    Wen Y D et al 2018 J. Phys. D: Appl. Phys. 51 025108
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Rui LI, Qihan WANG, Fucheng LIU, Kuangya GAO, Xiaohan HOU, Mengmeng JIA, Qing LI, Weili FAN. Reconfigurable (4, 62) and (4, 82) Archimedean plasma photonic crystals in dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(6): 064008. DOI: 10.1088/2058-6272/ad341f
    [3]Liting GUO, Yuyang PAN, Guanglin YU, Zhaoyang WANG, Kuangya GAO, Weili FAN, Lifang DONG. Controllable and tunable plasma photonic crystals through a combination of photonic crystal and dielectric barrier discharge patterns[J]. Plasma Science and Technology, 2023, 25(8): 085501. DOI: 10.1088/2058-6272/acb52b
    [4]Yu MA(马宇), Hao ZHANG(张浩), Haifeng ZHANG(章海锋), Ting LIU(刘婷), Wenyu LI(李文煜). Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence[J]. Plasma Science and Technology, 2019, 21(1): 15001-015001. DOI: 10.1088/2058-6272/aade85
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [7]GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01
    [8]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.

Catalog

    Article views (105) PDF downloads (286) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return