Advanced Search+
Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
Citation: Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30

CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency

Funds: The authors wish to acknowledge the supports of National Natural Science Foundation of China (Nos. 11775155, 51561135013, 21603202).
More Information
  • Received Date: July 03, 2018
  • A key problem in CO2 conversion by thermal plasma is suppressing the inverse reactions, CO+O→CO2 and CO+0.5O2 →CO2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused. A CO2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations.
  • [1]
    Hartley P et al 2016 Energ. J. 37 823 (http://www.owlnet. rice.edu/~tl5/EnergyIEEJ.pdf)
    [2]
    Matsumoto K I 2015 PLoS One 10 e0144884
    [3]
    Wilson I A G and Styring P 2017 Front. Energy Res. 5 19
    [4]
    Navarrete A et al 2017 Energy Technol. 5 796
    [5]
    Mikkelsen M, J?rgensena M and Krebs F C 2010 Energy Environ. Sci. 3 43
    [6]
    Graves C et al 2011 Renew. Sust. Energ. Rev. 15 1
    [7]
    Lavoie J M 2014 Front. Chem. 2 81
    [8]
    Pakhare D and Spivey J 2014 Chem. Soc. Rev. 43 7813
    [9]
    Bongers W et al 2017 Plasma Processes Polym. 14 1600126
    [10]
    Nunnally T et al 2011 J. Phy. D Appl. Phys. 44 274009
    [11]
    Li J et al 2017 J. CO 2 Util. 21 72
    [12]
    Yang T et al 2018 Plasma Sci. Technol. 20 065502
    [13]
    Chen G et al 2016 Appl. Catal. B-Environ. 190 115
    [14]
    Ramakers M et al 2017 Chem. Sus. Chem. 10 2642
    [15]
    Wu J J and Zhou X D 2016 Chinese J. Catal. 37 999
    [16]
    Snoeckx R and Bogaerts A 2017 Chem. Soc. Rev. 46 5805
    [17]
    Bogaerts A et al 2015 Faraday Discuss. 183 217
    [18]
    Fridman A 2008 Plasma Chemistry (London: Cambridge University Press)
    [19]
    Yun S H, Kim G J and Park D W 1997 J. Ind. Eng. Chem. 4 293
    [20]
    Huczko A and Szymański A 1984 Plasma Chem. Plasma Proces. 4 59
    [21]
    Polak L S et al 1977 Carbon Dioxide Dissociation in Electric Discharges: Arc Discharge (Moscow: Institute of Petrochemical Synthesis, USSR Academy of Sciences)
  • Related Articles

    [1]Aigerim TAZHEN, Merlan DOSBOLAYEV, Tlekkabul RAMAZANOV. Investigation of self-generated magnetic field and dynamics of a pulsed plasma flow[J]. Plasma Science and Technology, 2022, 24(5): 055403. DOI: 10.1088/2058-6272/ac5018
    [2]Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93
    [3]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [4]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [5]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [6]WANG Xiaoyu (王晓玉), FAN Yuwei (樊玉伟). Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator[J]. Plasma Science and Technology, 2015, 17(10): 893-896. DOI: 10.1088/1009-0630/16/17/10/14
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [10]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Ou, Y., Wu, J. et al. Experimental Investigation on Plume Characteristics of PTFE-Filled Carbon, Graphite, Graphene for Laser-Assisted Pulsed Plasma Thruster. Applied Sciences (Switzerland), 2023, 13(16): 9283. DOI:10.3390/app13169283
    2. Li, Y., Ou, Y., Wu, J. et al. Dynamic simulation on laser-metal interaction in laser ablation propulsion considering moving interface, finite thermal wave transfer, and phase explosion. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.03.039
    3. Peng, Z., Li, Z., Song, F. et al. Ion Electric Propulsion System Electric Breakdown Problems: Causes, Impacts and Protection Strategies. IEEE Access, 2023. DOI:10.1109/ACCESS.2023.3312719
    4. Xu, Y., Yang, L., Zhou, D. et al. Experimental study on the dynamics and parameters of nanosecond laser-induced aluminum plasma. Journal of Physics D: Applied Physics, 2022, 55(32): 325201. DOI:10.1088/1361-6463/ac6a27
    5. Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506. DOI:10.1063/5.0073678
    6. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Article views (167) PDF downloads (600) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return