Advanced Search+
Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
Citation: Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4

Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM

Funds: This work was supported by National Natural Science Foundation of China (No. 51 676 073), the Guangdong Province Train High-Level Personnel Special Support Program (No. 2014TQ01N334), the Science and Technology Project of Guangdong Province (No. 2015A020215005) and the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization (No. 2013A061401005).
More Information
  • Received Date: July 27, 2018
  • Laser-induced breakdown spectroscopy (LIBS) is a new technology suitable for classification of various materials. This paper proposes a hybrid classification scheme for coal, municipal sludge and biomass by using LIBS combined with K-means and support vector machine (SVM) algorithm. In the study, 10 samples were classified in 3 groups without supervision by K-means clustering, then a further supervised classification of 6 kinds of biomass samples by SVM was carried out. The results show that the comprehensive accuracy of the hybrid classification model is over 98%. In comparison with the single SVM classification model, the hybrid classification model can save 58.92% of operation time while guaranteeing the accuracy. The results demonstrate that the hybrid classification model is able to make an efficient, fast and accurate classification of coal, municipal sludge and biomass, furthermore, it is precise for the detection of various kinds of biomass fuel.
  • [1]
    Liu Y Z et al 2018 Appl. Energy 215 523
    [2]
    Xiao H R et al 2009 Chin. Agr. Mechaniz. 2009 65 (in Chinese)
    [3]
    Yang Y B et al 2008 Energy Fuels 22 306
    [4]
    Nunes L J R, Matias J C O and Catal?o J P S 2014 Appl. Energy 127 135
    [5]
    Cremers D A and Radziemski L J 2006 Handbook of Laser- Induced Breakdown Spectroscopy (Chichester: Wiley)
    [6]
    Yao S C et al 2015 Plasma Sci. Technol. 17 938
    [7]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [8]
    Fortes F J et al 2013 Anal. Chem. 85 640
    [9]
    Snyder E G et al 2008 Appl. Opt. 47 G80
    [10]
    Samek O, Telle H H and Beddows D C 2001 BMC Oral Health 1 1
    [11]
    Jurado-López A and de Castro M D L 2003 Spectrochim. Acta B 58 1291
    [12]
    Yu Q et al 2014 Spectrosc. Spectral Anal. 34 3095 (in Chinese)
    [13]
    Yueh F Y et al 2009 Spectrochim. Acta B 64 1059
    [14]
    Wang Q Q et al 2012 Spectrosc. Spectral Anal. 32 3179 (in Chinese)
    [15]
    Tian Y et al 2012 Spectrosc. Spectral Anal. 32 2027 (in Chinese)
    [16]
    Sheng L W et al 2015 J. Anal. At. Spectrom. 30 453
    [17]
    Zhu Y N et al 2017 Chin. J. Anal. Chem. 45 336 (in Chinese)
    [18]
    Myakalwar A K et al 2011 Talanta 87 53
    [19]
    Zhang T L et al 2017 J. Anal. At. Spectrom. 32 1960
    [20]
    Dong M R et al 2012 J. Eng. Thermophys. 33 175 (in Chinese)
    [21]
    Bach Q V et al 2013 Energy Fuels 27 6743
    [22]
    Jantzi S C et al 2016 Spectrochimica. Acta B 115 52
    [23]
    Kanungo T et al 2002 IEEE Trans. Pattern Anal. 24 881
    [24]
    Cristianini N and Shawe-Taylor J 2000 An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge: Cambridge University Press) ISBN 0-521-78019-5
    [25]
    He L A et al 2016 Plasma Sci. Technol. 18 647
    [26]
    MathWorks k-means clustering http://in.mathworks.com/ help/stats/k-means-clustering.html
    [27]
    Liang L et al 2014 Appl. Opt. 53 544
    [28]
    Cortes C and Vapnik V 1995 Mach. Learn. 20 273
    [29]
    Fu C M and Liu J N 2007 Sci. Inf. (Acad. Ed.) 29 191 (in Chinese)
    [30]
    Chang C C and Lin C J 2014 LIBSVM a library for support vector machines (version 3.20) (https://csie.ntu.edu.tw/ ~cjlin/libsvm/)
    [31]
    Ning X R, Selesnick I W and Duval L 2014 Chemom. Intell. Lab. Syst. 139 156
    [32]
    Navarro-Huerta J A et al 2017 J. Chromatogr. A 1507 1
    [33]
    BEADS: Baseline Estimation and Denoising with Sparsity, version 1.7.0.1 by Laurent Duval, in MathWorks website: (https://in.mathworks.com/matlabcentral/fileexchange/ 49974-beads-baseline-estimation-and-)
    [34]
    Wang R 2007 J. Chongqing Normal Univ. (Nat. Sci. Ed.) 24 36 (in Chinese)
    [35]
    Gong Y G and Tang S P 2010 Comput. Simul. 27 204 (in Chinese)
    [36]
    Shrivastava N A et al 2015 IEEE Trans Ind. Inf. 11 322
  • Cited by

    Periodical cited type(25)

    1. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    2. Sun, Y., Liu, L., Xiao, L. Application of Wavelet Threshold Denoising in LIBS Spectral Denoising. 2024. DOI:10.1109/EIT63098.2024.10762555
    3. Wu, L., Kim, S.K. Evaluating the economic and climate adaptation benefits of land conservation strategies in urban coastal regions of the U.S. and China. Climate Risk Management, 2024. DOI:10.1016/j.crm.2024.100632
    4. Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807
    5. Yang, L., Xiang, Y., Li, Y. et al. Identification and classification of recyclable waste using laser-induced breakdown spectroscopy technology. AIP Advances, 2023, 13(7): 075024. DOI:10.1063/5.0149329
    6. Xu, L., Shu, Q., Fu, H. et al. Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests, 2023, 14(5): 876. DOI:10.3390/f14050876
    7. Brunnbauer, L., Gajarska, Z., Lohninger, H. et al. A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS). TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2022.116859
    8. Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    11. Kim, S.K., Bennett, M.M., van Gevelt, T. et al. Urban agglomeration worsens spatial disparities in climate adaptation. Scientific Reports, 2021, 11(1): 8446. DOI:10.1038/s41598-021-87739-1
    12. Song, Y., Song, W., Yu, X. et al. Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.339053
    13. Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357
    14. Teng, G., Wang, Q., Cui, X. et al. Predictive data clustering of laser-induced breakdown spectroscopy for brain tumor analysis. Biomedical Optics Express, 2021, 12(7): 4438-4451. DOI:10.1364/BOE.431356
    15. Yang, Y., Zhang, L., Hao, X. et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy | [机器学习结合激光诱导击穿光谱技术铁矿石分类方法]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50(5): 20200490. DOI:10.3788/IRLA20200490
    16. Wang, C., Wang, J., Wang, J. et al. Classification of 13 original rock samples by laser induced breakdown spectroscopy. Laser Physics, 2021, 31(3): 035601. DOI:10.1088/1555-6611/abdfc8
    17. Jayaganthan, S., Babu, M.S., Vasa, N.J. et al. Classification of coal deposited epoxy micro-nanocomposites by adopting machine learning techniques to libs analysis. Journal of Physics Communications, 2021, 5(10): 105006. DOI:10.1088/2399-6528/ac2b5d
    18. Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda
    19. Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed
    20. Dong, M., Wei, L., González, J.J. et al. Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92(10): 7003-7010. DOI:10.1021/acs.analchem.0c00188
    21. Yang, Y., Hao, X., Zhang, L. et al. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors (Switzerland), 2020, 20(5): 1393. DOI:10.3390/s20051393
    22. Wang, Z., Hou, Z., Zhang, L. et al. Coal analysis. Laser-Induced Breakdown Spectroscopy, Second Edition, 2020. DOI:10.1016/B978-0-12-818829-3.00021-6
    23. Xia, W., Zeng, J., Long, Z. et al. Study on fracture fault diagnosis online method of bogie of maglev train. 2019. DOI:10.1109/CAC48633.2019.8996297
    24. Wang, Z., Wang, S., Kong, D. et al. Methane detection based on improved chicken algorithm optimization support vector machine. Applied Sciences (Switzerland), 2019, 9(9): 1761. DOI:10.3390/app9091761
    25. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (142) PDF downloads (240) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return