Citation: | Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4 |
[1] |
Liu Y Z et al 2018 Appl. Energy 215 523
|
[2] |
Xiao H R et al 2009 Chin. Agr. Mechaniz. 2009 65 (in Chinese)
|
[3] |
Yang Y B et al 2008 Energy Fuels 22 306
|
[4] |
Nunes L J R, Matias J C O and Catal?o J P S 2014 Appl. Energy 127 135
|
[5] |
Cremers D A and Radziemski L J 2006 Handbook of Laser- Induced Breakdown Spectroscopy (Chichester: Wiley)
|
[6] |
Yao S C et al 2015 Plasma Sci. Technol. 17 938
|
[7] |
Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
|
[8] |
Fortes F J et al 2013 Anal. Chem. 85 640
|
[9] |
Snyder E G et al 2008 Appl. Opt. 47 G80
|
[10] |
Samek O, Telle H H and Beddows D C 2001 BMC Oral Health 1 1
|
[11] |
Jurado-López A and de Castro M D L 2003 Spectrochim. Acta B 58 1291
|
[12] |
Yu Q et al 2014 Spectrosc. Spectral Anal. 34 3095 (in Chinese)
|
[13] |
Yueh F Y et al 2009 Spectrochim. Acta B 64 1059
|
[14] |
Wang Q Q et al 2012 Spectrosc. Spectral Anal. 32 3179 (in Chinese)
|
[15] |
Tian Y et al 2012 Spectrosc. Spectral Anal. 32 2027 (in Chinese)
|
[16] |
Sheng L W et al 2015 J. Anal. At. Spectrom. 30 453
|
[17] |
Zhu Y N et al 2017 Chin. J. Anal. Chem. 45 336 (in Chinese)
|
[18] |
Myakalwar A K et al 2011 Talanta 87 53
|
[19] |
Zhang T L et al 2017 J. Anal. At. Spectrom. 32 1960
|
[20] |
Dong M R et al 2012 J. Eng. Thermophys. 33 175 (in Chinese)
|
[21] |
Bach Q V et al 2013 Energy Fuels 27 6743
|
[22] |
Jantzi S C et al 2016 Spectrochimica. Acta B 115 52
|
[23] |
Kanungo T et al 2002 IEEE Trans. Pattern Anal. 24 881
|
[24] |
Cristianini N and Shawe-Taylor J 2000 An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge: Cambridge University Press) ISBN 0-521-78019-5
|
[25] |
He L A et al 2016 Plasma Sci. Technol. 18 647
|
[26] |
MathWorks k-means clustering http://in.mathworks.com/ help/stats/k-means-clustering.html
|
[27] |
Liang L et al 2014 Appl. Opt. 53 544
|
[28] |
Cortes C and Vapnik V 1995 Mach. Learn. 20 273
|
[29] |
Fu C M and Liu J N 2007 Sci. Inf. (Acad. Ed.) 29 191 (in Chinese)
|
[30] |
Chang C C and Lin C J 2014 LIBSVM a library for support vector machines (version 3.20) (https://csie.ntu.edu.tw/ ~cjlin/libsvm/)
|
[31] |
Ning X R, Selesnick I W and Duval L 2014 Chemom. Intell. Lab. Syst. 139 156
|
[32] |
Navarro-Huerta J A et al 2017 J. Chromatogr. A 1507 1
|
[33] |
BEADS: Baseline Estimation and Denoising with Sparsity, version 1.7.0.1 by Laurent Duval, in MathWorks website: (https://in.mathworks.com/matlabcentral/fileexchange/ 49974-beads-baseline-estimation-and-)
|
[34] |
Wang R 2007 J. Chongqing Normal Univ. (Nat. Sci. Ed.) 24 36 (in Chinese)
|
[35] |
Gong Y G and Tang S P 2010 Comput. Simul. 27 204 (in Chinese)
|
[36] |
Shrivastava N A et al 2015 IEEE Trans Ind. Inf. 11 322
|
1. | Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606 | |
2. | Sun, Y., Liu, L., Xiao, L. Application of Wavelet Threshold Denoising in LIBS Spectral Denoising. 2024. DOI:10.1109/EIT63098.2024.10762555 | |
3. | Wu, L., Kim, S.K. Evaluating the economic and climate adaptation benefits of land conservation strategies in urban coastal regions of the U.S. and China. Climate Risk Management, 2024. DOI:10.1016/j.crm.2024.100632 | |
4. | Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807 | |
5. | Yang, L., Xiang, Y., Li, Y. et al. Identification and classification of recyclable waste using laser-induced breakdown spectroscopy technology. AIP Advances, 2023, 13(7): 075024. DOI:10.1063/5.0149329 | |
6. | Xu, L., Shu, Q., Fu, H. et al. Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests, 2023, 14(5): 876. DOI:10.3390/f14050876 | |
7. | Brunnbauer, L., Gajarska, Z., Lohninger, H. et al. A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS). TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2022.116859 | |
8. | Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490 | |
9. | Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609 | |
10. | Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175 | |
11. | Kim, S.K., Bennett, M.M., van Gevelt, T. et al. Urban agglomeration worsens spatial disparities in climate adaptation. Scientific Reports, 2021, 11(1): 8446. DOI:10.1038/s41598-021-87739-1 | |
12. | Song, Y., Song, W., Yu, X. et al. Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.339053 | |
13. | Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357 | |
14. | Teng, G., Wang, Q., Cui, X. et al. Predictive data clustering of laser-induced breakdown spectroscopy for brain tumor analysis. Biomedical Optics Express, 2021, 12(7): 4438-4451. DOI:10.1364/BOE.431356 | |
15. | Yang, Y., Zhang, L., Hao, X. et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy | [机器学习结合激光诱导击穿光谱技术铁矿石分类方法]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50(5): 20200490. DOI:10.3788/IRLA20200490 | |
16. | Wang, C., Wang, J., Wang, J. et al. Classification of 13 original rock samples by laser induced breakdown spectroscopy. Laser Physics, 2021, 31(3): 035601. DOI:10.1088/1555-6611/abdfc8 | |
17. | Jayaganthan, S., Babu, M.S., Vasa, N.J. et al. Classification of coal deposited epoxy micro-nanocomposites by adopting machine learning techniques to libs analysis. Journal of Physics Communications, 2021, 5(10): 105006. DOI:10.1088/2399-6528/ac2b5d | |
18. | Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda | |
19. | Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed | |
20. | Dong, M., Wei, L., González, J.J. et al. Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92(10): 7003-7010. DOI:10.1021/acs.analchem.0c00188 | |
21. | Yang, Y., Hao, X., Zhang, L. et al. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors (Switzerland), 2020, 20(5): 1393. DOI:10.3390/s20051393 | |
22. | Wang, Z., Hou, Z., Zhang, L. et al. Coal analysis. Laser-Induced Breakdown Spectroscopy, Second Edition, 2020. DOI:10.1016/B978-0-12-818829-3.00021-6 | |
23. | Xia, W., Zeng, J., Long, Z. et al. Study on fracture fault diagnosis online method of bogie of maglev train. 2019. DOI:10.1109/CAC48633.2019.8996297 | |
24. | Wang, Z., Wang, S., Kong, D. et al. Methane detection based on improved chicken algorithm optimization support vector machine. Applied Sciences (Switzerland), 2019, 9(9): 1761. DOI:10.3390/app9091761 | |
25. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |