Advanced Search+
H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1
Citation: H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1

Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes

Funds: This work is partially supported by the Higher Education Commission Project No. 1852.
More Information
  • Received Date: July 06, 2018
  • A comparative study of radio-frequency atmospheric pressure glow discharge (rf APGD) generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes, impedance measurements have been performed and compared with equivalent circuit models. The measured impedance data is found to be in good agreement with simulated data.
  • [1]
    Gandhiraman R P et al 2016 Appl. Phys. Lett. 108 123103
    [2]
    Fruchtman A 2006 Phys. Rev. Lett. 96 065002
    [3]
    Uhm H S et al 2009 Phys. Plasmas 16 094503
    [4]
    Qazi H I A et al 2015 Phys. Plasmas 22 123512
    [5]
    Kong M G et al 2009 New J. Phys. 11 115012
    [6]
    Tatarova E et al 2014 Plasma Sources Sci. Technol. 23 063002
    [7]
    Shi J J et al 2003 J. Appl. Phys. 94 6303
    [8]
    Wang H B et al 2006 Appl. Phys. Lett. 89 161504
    [9]
    Laimer J and St?ri H 2006 Plasma Process. Polym. 3 573
    [10]
    Li H P et al 2007 Plasma Chem. Plasma Process 27 529
    [11]
    Hussain S et al 2016 Pramana 87 86
    [12]
    Shi J J, Liu D W and Kong M G 2007 IEEE Trans. Plasma Sci. 35 137
    [13]
    Li B, Chen Q and Liu Z W 2010 Appl. Phys. Lett. 96 041502
    [14]
    Qazi H I A et al 2013 Plasma Sci. Technol. 15 900
    [15]
    Park S J, Kim K S and Eden J G 2005 Appl. Phys. Lett. 86 221501
    [16]
    Hussain S, Qazi H I A and Badar M A 2014 Phys. Plasmas 21 030702
    [17]
    Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
    [18]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasma (New York: Cambridge University Press)
    [19]
    Shi J J, Liu D W and Kong M G 2006 Appl. Phys. Lett. 89 081502
    [20]
    Balcon N 2007 Atmospheric pressure radio frequency discharges, diagnostic and numerical modeling PhD Australian National University Canberra Australia
    [21]
    Qurat-ul-Ain S H and Laimer J 2011 Surf. Coat. Technol. 205 S326
    [22]
    Shi J J, Liu D W and Kong M G 2007 Appl. Phys. Lett. 90 031505
    [23]
    Pal U N et al 2011 IEEE Trans. Plasma Sci. 39 1475
    [24]
    Nersisyan G and Graham W G 2004 Plasma Sources Sci. Technol. 13 582
    [25]
    Moon S Y et al 2006 Phys. Plasmas 13 033502
    [26]
    Hussain S et al 2014 IEEE Trans. Plasma Sci. 42 2410
  • Cited by

    Periodical cited type(4)

    1. Du, M.Q., Ding, Z.F., Qi, L.W. et al. Effects of impedance matching network on α-γ mode transition in atmospheric pressure RF discharges. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(8): 086001. DOI:10.35848/1347-4065/ad606e
    2. Zhang, Z.-H., Zhong, K.-X., Liu, Y. et al. Fluid simulation of atmospheric argon RF dielectric barrier discharges: Role of neutral gas temperature. Physics of Plasmas, 2024, 31(5): 053515. DOI:10.1063/5.0202078
    3. Wang, K., Li, J., Wang, S. et al. Atmospheric Capillary Plasma Electrode Discharge Based on Porous Anodic Alumina | [基于多孔阳极氧化铝的大气压毛细管等离子体电极放电研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2023, 43(10): 863-869. DOI:10.13922/j.cnki.cjvst.202306011
    4. Wang, L., Lazarou, C., Anastassiou, C. et al. Investigation of an atmospheric pressure radio frequency helium planar plasma source in humid ambient air. Plasma Sources Science and Technology, 2021, 30(7): 075029. DOI:10.1088/1361-6595/ac12c0

    Other cited types(0)

Catalog

    Article views (175) PDF downloads (221) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return