Citation: | H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1 |
[1] |
Gandhiraman R P et al 2016 Appl. Phys. Lett. 108 123103
|
[2] |
Fruchtman A 2006 Phys. Rev. Lett. 96 065002
|
[3] |
Uhm H S et al 2009 Phys. Plasmas 16 094503
|
[4] |
Qazi H I A et al 2015 Phys. Plasmas 22 123512
|
[5] |
Kong M G et al 2009 New J. Phys. 11 115012
|
[6] |
Tatarova E et al 2014 Plasma Sources Sci. Technol. 23 063002
|
[7] |
Shi J J et al 2003 J. Appl. Phys. 94 6303
|
[8] |
Wang H B et al 2006 Appl. Phys. Lett. 89 161504
|
[9] |
Laimer J and St?ri H 2006 Plasma Process. Polym. 3 573
|
[10] |
Li H P et al 2007 Plasma Chem. Plasma Process 27 529
|
[11] |
Hussain S et al 2016 Pramana 87 86
|
[12] |
Shi J J, Liu D W and Kong M G 2007 IEEE Trans. Plasma Sci. 35 137
|
[13] |
Li B, Chen Q and Liu Z W 2010 Appl. Phys. Lett. 96 041502
|
[14] |
Qazi H I A et al 2013 Plasma Sci. Technol. 15 900
|
[15] |
Park S J, Kim K S and Eden J G 2005 Appl. Phys. Lett. 86 221501
|
[16] |
Hussain S, Qazi H I A and Badar M A 2014 Phys. Plasmas 21 030702
|
[17] |
Lieberman M A and Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
|
[18] |
Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasma (New York: Cambridge University Press)
|
[19] |
Shi J J, Liu D W and Kong M G 2006 Appl. Phys. Lett. 89 081502
|
[20] |
Balcon N 2007 Atmospheric pressure radio frequency discharges, diagnostic and numerical modeling PhD Australian National University Canberra Australia
|
[21] |
Qurat-ul-Ain S H and Laimer J 2011 Surf. Coat. Technol. 205 S326
|
[22] |
Shi J J, Liu D W and Kong M G 2007 Appl. Phys. Lett. 90 031505
|
[23] |
Pal U N et al 2011 IEEE Trans. Plasma Sci. 39 1475
|
[24] |
Nersisyan G and Graham W G 2004 Plasma Sources Sci. Technol. 13 582
|
[25] |
Moon S Y et al 2006 Phys. Plasmas 13 033502
|
[26] |
Hussain S et al 2014 IEEE Trans. Plasma Sci. 42 2410
|
1. | Du, M.Q., Ding, Z.F., Qi, L.W. et al. Effects of impedance matching network on α-γ mode transition in atmospheric pressure RF discharges. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(8): 086001. DOI:10.35848/1347-4065/ad606e | |
2. | Zhang, Z.-H., Zhong, K.-X., Liu, Y. et al. Fluid simulation of atmospheric argon RF dielectric barrier discharges: Role of neutral gas temperature. Physics of Plasmas, 2024, 31(5): 053515. DOI:10.1063/5.0202078 | |
3. | Wang, K., Li, J., Wang, S. et al. Atmospheric Capillary Plasma Electrode Discharge Based on Porous Anodic Alumina | [基于多孔阳极氧化铝的大气压毛细管等离子体电极放电研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2023, 43(10): 863-869. DOI:10.13922/j.cnki.cjvst.202306011 | |
4. | Wang, L., Lazarou, C., Anastassiou, C. et al. Investigation of an atmospheric pressure radio frequency helium planar plasma source in humid ambient air. Plasma Sources Science and Technology, 2021, 30(7): 075029. DOI:10.1088/1361-6595/ac12c0 |