Advanced Search+
A V KHLYUSTOVA, N A SIROTKIN, A S KRAYEV, V A TITOV, A V AGAFONOV. Synthesis of MoO3 by glow discharge in contact with water[J]. Plasma Science and Technology, 2019, 21(2): 25505-025505. DOI: 10.1088/2058-6272/aaf02b
Citation: A V KHLYUSTOVA, N A SIROTKIN, A S KRAYEV, V A TITOV, A V AGAFONOV. Synthesis of MoO3 by glow discharge in contact with water[J]. Plasma Science and Technology, 2019, 21(2): 25505-025505. DOI: 10.1088/2058-6272/aaf02b

Synthesis of MoO3 by glow discharge in contact with water

More Information
  • Received Date: October 07, 2018
  • An atmospheric pressure glow discharge was ignited between a molybdenum anode and the water surface of a cathode for the synthesis of MoO3 powders. The action of glow discharge leads to the non-equilibrium evaporation of water, sputtering of the metal anode and formation of molybdenum (VI) oxide, which deposited on the anode. The chemical composition and morphology of the obtained powder were performed by using x-ray diffraction spectroscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that the synthesized powders are pure α-MoO3. The possible mechanism of the formation of molybdenum trioxide during glow discharge treatment was described. The photocatalytic performance of MoO3 was estimated through the degradation of Rhodamine B under dark and UV irradiation conditions. Orthorhombic MoO3 exhibited the best photocatalytic activity for the photodegradation of Rhodamine B of 100% under UV irradiation for 15 min.
  • [1]
    Chen Y P et al 2010 Cryst. Eng. Comm. 12 3740
    [2]
    Yao J N, Yang Y A and Loo B H 1998 J. Phys. Chem. B 102 1856
    [3]
    Yao D D et al 2013 Nanoscale 5 10353
    [4]
    Sen U K and Mitra S 2012 RSC Adv. 2 11123
    [5]
    Sakaushi K et al 2013 Chem. Mater. 25 2557
    [6]
    Fu Q et al 2013 ACS Appl. Mater. Interfaces 5 6024
    [7]
    Zollfrank C et al 2012 Mater. Sci. Eng. C 32 47
    [8]
    Krishnamoorthy K et al 2013 Colloids Surf. B 112 521
    [9]
    Krishnamoorthy K et al 2014 Nanotechnology 25 315101
    [10]
    Anh Tran T et al 2014 ACS Appl. Mater. Interfaces 6 2980
    [11]
    Desai N et al 2015 J. Nanomed. Nanotechnol. 6 338
    [12]
    Ramana C V and Julien C M 2006 Chem. Phys. Lett. 428 114
    [13]
    Ramana C V et al 2007 Appl. Surf. Sci. 253 5368
    [14]
    Zakharova G S et al 2007 Solid State Sci. 9 1028
    [15]
    Ramana C V et al 2009 Solid State Commun. 149 6
    [16]
    Chiang T H and Yeh H C 2013 Materials 6 4609
    [17]
    Hu H et al 2015 J. Exp. Nanosci. 10 1336
    [18]
    Manivel A et al 2015 Mater. Res. Bull. 62 184
    [19]
    Mariotti D et al 2008 Nanotechnology 19 495302
    [20]
    Bose A C et al 2006 Nanotechnology 17 5976
    [21]
    Mariotti D, Bose A C and Ostrikov K 2009 IEEE Trans. Plasma Sci. 37 1027
    [22]
    Pai D Z 2011 J. Phys. D: Appl. Phys. 44 174024
    [23]
    Klinbumrung A, Thongtem T and Thongtem S 2012 J. Nanomater. 2012 10
    [24]
    Pai D Z et al 2013 Sci. Rep. 3 1221
    [25]
    Lebid A et al 2014 J. Phys: Conf. Ser. 550 012027
    [26]
    Sharma S S et al 2016 AIP Conf. Proc. 1728 020116
    [27]
    Opra D P et al 2016 Solid State Phenom. 245 172–7
    [28]
    Veklich A et al 2017 Plasma Phys. Technol. 4 28
    [29]
    Mariotti D et al 2012 Plasma Processes Polym. 9 1074
    [30]
    Chen Q, Li J and Li Y 2015 J. Phys. D: Appl. Phys. 48 424005
    [31]
    Saito G and Akiyama T 2015 J. Nanomater. 2015 123696
    [32]
    Allagui A et al 2017 J. Electrochem. Soc. 164 A2539
    [33]
    Allagui A, Salameh T and Alawadhi H 2015 Int. J. Energy. Res. 39 1689
    [34]
    Stojadinovi? S et al 2015 J. Appl. Phys. 117 233304
    [35]
    Matsushima Y et al 2006 J. Am. Ceram. Soc. 89 799
    [36]
    Gra?ulis S et al 2011 Nucleic Acids Res. 40 420
    [37]
    Gerasimova T V et al 2016 Microporous Mesoporous Mater. 235 185
    [38]
    Martín-Ramos P et al 2018 Nanomater 8 559
    [39]
    Khlyustova A V et al 2017 Prikladnaja Fizika 6 44 (in Russian)
    [40]
    Liu Y et al 2017 Sci. Rep. 7 1845
    [41]
    Luo H Y, Wei M D and Wei K M 2009 Mater. Chem. Phys. 113 85
    [42]
    Atuchin V V et al 2008 Inorg. Mater. 44 622
    [43]
    Hosseini S H, Saghafi M and Heshmati-Manesh S 2012 Mater. Manuf. Processes 27 1271
    [44]
    Pachlhofer J M et al 2017 J. Vac. Sci. Technol. A 35 021504
    [45]
    Khlyustova A and Maksimov A 2013 Contrib. Plasma Phys. 53 481
    [46]
    Sirotkin N A and Titov V A 2017 Plasma Chem. Plasma Process 37 1475
    [47]
    Li Z et al 2017 Cryst. Eng. Comm. 19 1479
    [48]
    Wang J et al 2017 Catal. Commun. 92 100
    [49]
    Chou T P et al 2007 J. Phys. Chem. C 111 6296
    [50]
    Yang H B et al 2014 Chin. J. Catal. 35 140
    [51]
    Rakkesh R A and Balakumar S 2015 J. Nanosci. Nanotechnol. 15 4316
  • Cited by

    Periodical cited type(13)

    1. Nikolay, S., Victor, K. The Influence of an External Uniform Magnetic Field on the Process of Synthesis of Fe2O3 Nanoparticles in the Plasma of an Impulse Underwater Discharge. Plasma Chemistry and Plasma Processing, 2024, 44(2): 965-981. DOI:10.1007/s11090-024-10458-8
    2. Khlyustova, A., Sirotkin, N. One-Stage Method for Removing Dyes under the Action of Underwater Plasma and Ferrites of Cobalt, Nickel, and Titanium. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10471-x
    3. Seutcha, R.L., Kamgang-Youbi, G., Acayanka, E. et al. Plasma synthesis of various polymorphs of tungsten trioxide nanoparticles using gliding electric discharge in humid air: characterization and photocatalytic properties. Plasma Science and Technology, 2023, 25(12): 125502. DOI:10.1088/2058-6272/ace235
    4. Agafonov, A.V., Sirotkin, N.A., Titov, V.A. et al. Low-Temperature Underwater Plasma as an Instrument to Manufacture Inorganic Nanomaterials. Russian Journal of Inorganic Chemistry, 2022, 67(3): 253-261. DOI:10.1134/S0036023622030020
    5. Sirotkin, N.A., Khlyustova, A.V., Titov, V.A. et al. The Use of a Novel Three-Electrode Impulse Underwater Discharge for the Synthesis of W-Mo Mixed Oxide Nanocomposites. Plasma Chemistry and Plasma Processing, 2022, 42(1): 191-209. DOI:10.1007/s11090-021-10213-3
    6. Lu, Q.-F., Li, J.-L., Yu, J. et al. Preparation of Ta2O5nanoparticles by using cathode glow discharge electrolysis. Materials Research Express, 2021, 8(12): 125011. DOI:10.1088/2053-1591/ac3e94
    7. Khlyustova, A., Sirotkin, N., Kraev, A. et al. Mo-doped TiO2 using plasma in contact with liquids: advantages and limitations. Journal of Chemical Technology and Biotechnology, 2021, 96(4): 1125-1131. DOI:10.1002/jctb.6628
    8. Khlyustova, A., Sirotkin, N., Titov, V. et al. Effect of low-temperature underwater plasma produced of new properties of Mo–Ti mixed oxide composites for electron transport layer in the dye-sensitized solar cells. Journal of Alloys and Compounds, 2021. DOI:10.1016/j.jallcom.2020.157664
    9. Khlyustova, A.V., Sirotkin, N.A., Kraev, A.S. et al. Synthesis and Characterization of Titanium Oxide Nanoparticles by Plasma in Contact with Liquid. Plasma Chemistry and Plasma Processing, 2021, 41(2): 643-657. DOI:10.1007/s11090-020-10136-5
    10. Khlyustova, A., Sirotkin, N., Titov, V. et al. Comparison of two types of plasma in contact with water during the formation of molybdenum oxide. Current Applied Physics, 2020, 20(12): 1396-1403. DOI:10.1016/j.cap.2020.09.012
    11. Sirotkin, N., Khlyustova, A., Titov, V. et al. Plasma-assisted synthesis and deposition of molybdenum oxide nanoparticles on polyethylene terephthalate for photocatalytic degradation of rhodamine B. Plasma Processes and Polymers, 2020, 17(9): 2000012. DOI:10.1002/ppap.202000012
    12. Wu, J.-C., Wu, K.-Y., Jia, B.-Y. et al. Spectral Characteristics of an Argon/Oxygen Plasma Plumes Excited by DC Voltage and Operated Underwater | [水下运行直流激励大气压辉光放电的光谱特性研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2020, 40(8): 2500-2504. DOI:10.3964/j.issn.1000-0593(2020)08-2500-05
    13. Tazmeev, G.K., Timerkaev, B.A., Tazmeev, A.K. About changes in the physicochemical properties of aqueous solutions used as a liquid electrolyte cathode. Journal of Physics: Conference Series, 2019, 1393(1): 012032. DOI:10.1088/1742-6596/1393/1/012032

    Other cited types(0)

Catalog

    Article views (96) PDF downloads (195) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return