Citation: | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[1] |
Colao F et al 2004 Appl. Phys. A 79 143
|
[2] |
Noll R et al 2014 Spectrochim. Acta B 93 41
|
[3] |
Lin X M et al 2015 Plasma Sci. Technol. 17 933
|
[4] |
Guo L B et al 2013 Opt. Express 21 18188
|
[5] |
Sun L X et al 2015 Spectrochim. Acta B 112 40
|
[6] |
Ismail M A et al 2004 J. Anal. At. Spectrom 19 489
|
[7] |
Eppler A S et al 1996 Appl. Spectrosc 50 1175
|
[8] |
Anzano J M et al 2006 Anal. Chim. Acta 575 230
|
[9] |
Vrenegor J, Noll R and Sturm V 2005 Spectrochim. Acta B 60 1083
|
[10] |
Sun L X and Yu H B 2009 Talanta 79 388
|
[11] |
Li J M et al 2015 Opt. Lett 40 5224
|
[12] |
Lazic V et al 2001 Spectrochim. Acta B 56 807
|
[13] |
Wang Z et al 2011 J. Anal. At. Spectrom. 26 2289
|
[14] |
Wang Z et al 2011 J. Anal. At. Spectrom. 26 2175
|
[15] |
Afgan M S, Hou Z Y and Wang Z 2017 J. Anal. At. Spectrom. 32 1905
|
[16] |
Zhang T L et al 2014 J. Anal. At. Spectrom. 29 2323
|
[17] |
Li K H et al 2015 J. Anal. At. Spectrom. 30 1623
|
[18] |
Guo Y M et al 2017 J. Anal. At. Spectrom. 32 2401
|
[19] |
Huang G B, Zhu Q Y and Siew C K 2006 Neurocomputing 70 489
|
[20] |
Huang G B, Ding X J and Zhou H M 2010 Neurocomputing 74 155
|
1. | Zhang, D., Chen, Z., Nie, J. et al. A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance. Journal of Analytical Atomic Spectrometry, 2024, 39(10): 2402-2408. DOI:10.1039/d4ja00203b | |
2. | Zhao, S., Zhao, Y., Dai, Y. et al. Methods for optimization of the original signal in laser induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106982 | |
3. | Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216 | |
4. | Fu, H., Wang, H., Zhang, M. et al. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma. Plasma Science and Technology, 2022, 24(8): 084005. DOI:10.1088/2058-6272/ac6b8e | |
5. | Guo, L.-B., Zhang, D., Sun, L.-X. et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Frontiers of Physics, 2021, 16(2): 22500. DOI:10.1007/s11467-020-1007-z | |
6. | Liu, J.-M., Wu, D., Li, C. et al. Quantitative analysis of the nickel base alloy by laser-induced breakdown spectroscopy in high vacuum environment | [高真空环境下激光诱导击穿光谱技术对镍基合金的定量分析研究]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 79-85. DOI:10.13228/j.boyuan.issn1000-7571.011204 | |
7. | Maurya, G.S., Marín-Roldán, A., Veis, P. et al. A review of the LIBS analysis for the plasma-facing components diagnostics. Journal of Nuclear Materials, 2020. DOI:10.1016/j.jnucmat.2020.152417 | |
8. | Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4 | |
9. | Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f | |
10. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |