Advanced Search+
Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
Citation: Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3

Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 61571040).
More Information
  • Received Date: August 15, 2018
  • According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy (LIBS) has shown a great potential for rapid analysis in steel industry. Nevertheless, the accuracy and precision may be limited by complex matrix effect and self- absorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine (GA-KELM) is proposed for quantitative analysis of multiple elements (Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples. First, the standardized peak intensities of selected spectra lines are used as the input of model. Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer’s output matrix. Finally, the least square is applied to calculate the model’s output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor (R2), Root-mean- square Errors of Calibration (RMSEC), Root-mean-square Errors of Prediction (RMSEP) of GA- KELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.
  • [1]
    Colao F et al 2004 Appl. Phys. A 79 143
    [2]
    Noll R et al 2014 Spectrochim. Acta B 93 41
    [3]
    Lin X M et al 2015 Plasma Sci. Technol. 17 933
    [4]
    Guo L B et al 2013 Opt. Express 21 18188
    [5]
    Sun L X et al 2015 Spectrochim. Acta B 112 40
    [6]
    Ismail M A et al 2004 J. Anal. At. Spectrom 19 489
    [7]
    Eppler A S et al 1996 Appl. Spectrosc 50 1175
    [8]
    Anzano J M et al 2006 Anal. Chim. Acta 575 230
    [9]
    Vrenegor J, Noll R and Sturm V 2005 Spectrochim. Acta B 60 1083
    [10]
    Sun L X and Yu H B 2009 Talanta 79 388
    [11]
    Li J M et al 2015 Opt. Lett 40 5224
    [12]
    Lazic V et al 2001 Spectrochim. Acta B 56 807
    [13]
    Wang Z et al 2011 J. Anal. At. Spectrom. 26 2289
    [14]
    Wang Z et al 2011 J. Anal. At. Spectrom. 26 2175
    [15]
    Afgan M S, Hou Z Y and Wang Z 2017 J. Anal. At. Spectrom. 32 1905
    [16]
    Zhang T L et al 2014 J. Anal. At. Spectrom. 29 2323
    [17]
    Li K H et al 2015 J. Anal. At. Spectrom. 30 1623
    [18]
    Guo Y M et al 2017 J. Anal. At. Spectrom. 32 2401
    [19]
    Huang G B, Zhu Q Y and Siew C K 2006 Neurocomputing 70 489
    [20]
    Huang G B, Ding X J and Zhou H M 2010 Neurocomputing 74 155
  • Cited by

    Periodical cited type(10)

    1. Zhang, D., Chen, Z., Nie, J. et al. A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance. Journal of Analytical Atomic Spectrometry, 2024, 39(10): 2402-2408. DOI:10.1039/d4ja00203b
    2. Zhao, S., Zhao, Y., Dai, Y. et al. Methods for optimization of the original signal in laser induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106982
    3. Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216
    4. Fu, H., Wang, H., Zhang, M. et al. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma. Plasma Science and Technology, 2022, 24(8): 084005. DOI:10.1088/2058-6272/ac6b8e
    5. Guo, L.-B., Zhang, D., Sun, L.-X. et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Frontiers of Physics, 2021, 16(2): 22500. DOI:10.1007/s11467-020-1007-z
    6. Liu, J.-M., Wu, D., Li, C. et al. Quantitative analysis of the nickel base alloy by laser-induced breakdown spectroscopy in high vacuum environment | [高真空环境下激光诱导击穿光谱技术对镍基合金的定量分析研究]. Yejin Fenxi/Metallurgical Analysis, 2020, 40(12): 79-85. DOI:10.13228/j.boyuan.issn1000-7571.011204
    7. Maurya, G.S., Marín-Roldán, A., Veis, P. et al. A review of the LIBS analysis for the plasma-facing components diagnostics. Journal of Nuclear Materials, 2020. DOI:10.1016/j.jnucmat.2020.152417
    8. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    9. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    10. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (168) PDF downloads (251) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return