Advanced Search+
Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
Citation: Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf

Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator

Funds: Acknowledgments This work was sustained by National Natural Science Foundation of China (NSFC) (Nos. 11475026, 11664039 and 11305010). The calculation was carried out on the HSCC of Beijing Normal University. The authors are very grateful to Amir Sanjari (MInstP) for spending much time and energy making careful revisions to our paper. The authors are particularly grateful to CFSA at the University of Warwick for allowing us to use EPOCH.
More Information
  • Received Date: September 27, 2018
  • A special method is proposed of a laser-induced cavity pressure acceleration scheme for collimating, accelerating and guiding protons, using a single-cone target with a beam collimator through a target normal sheath acceleration mechanism. In addition, the problems involved are studied by using two-dimensional particle-in-cell simulations. The results show that the proton beam can be collimated, accelerated and guided effectively through this type of target. Theoretically, a formula is derived for the combined electric field of accelerating protons. Compared with a proton beam without a beam collimator, the proton beam density and cut-off energy of protons in the type II are increased by 3.3 times and 10% respectively. Detailed analysis shows that the enhancement is mainly due to the compact and strong sheath electrostatic field, and that the beam collimator plays a role in focusing energy. In addition, the simulation results show that the divergence angle of the proton beam in type II is less than 1.67 times that of type I. The more prominent point is that the proton number of type II is 2.2 times higher than that of type I. This kind of target has important applications in many fields, such as fast ion ignition in inertial fusion, high energy physics and proton therapy.
  • [1]
    Tabak M et al 1994 Phys. Plasmas 1 1626
    [2]
    Naumova N et al 2009 Phys. Rev. Lett. 102 025002
    [3]
    Roth M et al 2001 Phys. Rev. Lett. 86 436
    [4]
    Temporal M, Honrubia J J and Atzeni S 2002 Phys. Plasmas 9 3098
    [5]
    Bulanov S V and Khoroshkov V S 2002 Plasma Phys. Rep. 28 453
    [6]
    Robson L et al 2007 Nat. Phys. 3 58
    [7]
    Ditmire T et al 1999 Nature 398 489
    [8]
    Qiao B et al 2009 Phys. Rev. Lett. 102 145002
    [9]
    Qiao B et al 2010 Phys. Rev. Lett. 105 155002
    [10]
    Ji L L et al 2008 Phys. Rev. Lett. 101 164802
    [11]
    Zhuo H B et al 2010 Phys. Rev. Lett. 105 065003
    [12]
    Yin L et al 2006 Laser Part. Beams 24 291
    [13]
    Badziak J et al 2012 Phys. Plasmas 19 053105
    [14]
    Badziak J et al 2013 Appl. Phys. Lett. 103 124104
    [15]
    Wilks S C et al 2001 Phys. Plasmas 8 542
    [16]
    Xiao K D et al 2015 Phys. Plasmas 22 093112
    [17]
    Passoni M, Bertagna L and Zani A 2010 New J. Phys. 12 045012
    [18]
    Zhou C T and He X T 2007 Appl. Phys. Lett. 90 031503
    [19]
    Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751
    [20]
    Mason R J 2006 Phys. Rev. Lett. 96 035001
    [21]
    Xiao K D et al 2016 AIP Adv. 6 015303
    [22]
    King J A et al 2009 Phys. Plasmas 16 020701
    [23]
    Akli K U et al 2012 Phys. Rev. E 86 065402
    [24]
    Galloudec N R L et al 2009 Phys. Rev. Lett. 102 205003
    [25]
    Tanaka K A et al 2003 Phys. Plasmas 10 1925
    [26]
    Cao L H et al 2008 Phys. Rev. E 78 036405
    [27]
    Rassuchine J et al 2009 Phys. Rev. E 79 036408
    [28]
    Kluge T et al 2012 New J. Phys. 14 023038
    [29]
    Honrubia J J, Morace A and Murakami M 2017 Matter Radiat. Extremes 2 28
    [30]
    Robinson A P L and Sherlock M 2007 Phys. Plasmas 14 083105
    [31]
    Gong J X et al 2017 Phys. Plasmas 24 053109
    [32]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [33]
    Bartal T et al 2012 Nat. Phys. 8 139
    [34]
    Qiao B et al 2013 Phys. Rev. E 87 013108
    [35]
    Macchi A et al 2013 Plasma Phys. Control. Fusion 55 124020
  • Cited by

    Periodical cited type(2)

    1. Levy, D., Andriyash, I.A., Haessler, S. et al. Low divergence proton beams from a laser-plasma accelerator at kHz repetition rate. Physical Review Accelerators and Beams, 2022, 25(9): 093402. DOI:10.1103/PhysRevAccelBeams.25.093402
    2. Nishiura, T., Satou, H., Kawata, S. et al. Control of intense-laser ion acceleration. High Energy Density Physics, 2020. DOI:10.1016/j.hedp.2020.100799

    Other cited types(0)

Catalog

    Article views (210) PDF downloads (149) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return